English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Shift from widespread symbiont infection of host tissues to specific colonization of gills in juvenile deep-sea mussels

MPS-Authors
/persons/resource/persons210856

Wentrup,  C.
Department of Symbiosis, Max Planck Institute for Marine Microbiology, Max Planck Society;

/persons/resource/persons210854

Wendeberg,  A.
Department of Molecular Ecology, Max Planck Institute for Marine Microbiology, Max Planck Society;

/persons/resource/persons210284

Borowski,  C.
Department of Symbiosis, Max Planck Institute for Marine Microbiology, Max Planck Society;

/persons/resource/persons210343

Dubilier,  N.
Department of Symbiosis, Max Planck Institute for Marine Microbiology, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)

Wentrup13.pdf
(Publisher version), 2MB

Supplementary Material (public)
There is no public supplementary material available
Citation

Wentrup, C., Wendeberg, A., Huang, J. L. Y., Borowski, C., & Dubilier, N. (2013). Shift from widespread symbiont infection of host tissues to specific colonization of gills in juvenile deep-sea mussels. The ISME Journal, 7(6), 1244-1247.


Cite as: https://hdl.handle.net/21.11116/0000-0001-C6C1-5
Abstract
The deep-sea mussel Bathymodiolus harbors chemosynthetic bacteria in its gills that provide it with nutrition. Symbiont colonization is assumed to occur in early life stages by uptake from the environment, but little is known about this process. In this study, we used fluorescence in situ hybridization to examine symbiont distribution and the specificity of the infection process in juvenile B. azoricus and B. puteoserpentis (4-21 mm). In the smallest juveniles, we observed symbionts, but no other bacteria, in a wide range of epithelial tissues. This suggests that despite the widespread distribution of symbionts in many different juvenile organs, the infection process is highly specific and limited to the symbiotic bacteria. Juveniles >= 9mm only had symbionts in their gills, indicating an ontogenetic shift in symbiont colonization from indiscriminate infection of almost all epithelia in early life stages to spatially restricted colonization of gills in later developmental stages.