English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Predominant archaea in marine sediments degrade detrital proteins

MPS-Authors
/persons/resource/persons210763

Schreiber,  L.
Department of Molecular Ecology, Max Planck Institute for Marine Microbiology, Max Planck Society;

/persons/resource/persons210715

Richter,  M.
Microbial Genomics Group, Department of Molecular Ecology, Max Planck Institute for Marine Microbiology, Max Planck Society;

/persons/resource/persons210514

Kleindienst,  S.
Department of Molecular Ecology, Max Planck Institute for Marine Microbiology, Max Planck Society;

/persons/resource/persons210574

Lenk,  S.
Department of Molecular Ecology, Max Planck Institute for Marine Microbiology, Max Planck Society;

/persons/resource/persons210761

Schramm,  A.
Permanent Research Group Microsensor, Max Planck Institute for Marine Microbiology, Max Planck Society;

/persons/resource/persons210489

Jørgensen,  B. B.
Department of Biogeochemistry, Max Planck Institute for Marine Microbiology, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Lloyd, K. G., Schreiber, L., Petersen, D. G., Kjeldsen, K. U., Lever, M. A., Steen, A. D., et al. (2013). Predominant archaea in marine sediments degrade detrital proteins. Nature, 496(7444), 215-220.


Cite as: https://hdl.handle.net/21.11116/0000-0001-C6F1-F
Abstract
Half of the microbial cells in the Earth's oceans are found in sediments(1). Many of these cells are members of the Archaea(2), single-celled prokaryotes in a domain of life separate from Bacteria and Eukaryota. However, most of these archaea lack cultured representatives, leaving their physiologies and placement on the tree of life uncertain. Here we show that the uncultured miscellaneous crenar-chaeotal group (MCG) and marine benthic group-D (MBG-D) are among the most numerous archaea in the marine sub-sea floor. Single-cell genomic sequencing of one cell of MCG and three cells of MBG-D indicated that they form new branches basal to the archaeal phyla Thaumarchaeota(3) and Aigarchaeota(4), for MCG, and the order Thermoplasmatales, for MBG-D. All four cells encoded extracellular protein-degrading enzymes such as gingipain and clostripain that are known to be effective in environments chemically similar to marine sediments. Furthermore, we found these two types of peptidase to be abundant and active in marine sediments, indicating that uncultured archaea may have a previously undiscovered role in protein remineralization in anoxic marine sediments.