English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Turnover of microbial lipids in the deep biosphere and growth of benthic archaeal populations

MPS-Authors
/persons/resource/persons210851

Wegener,  G.
HGF MPG Joint Research Group for Deep Sea Ecology & Technology, Max Planck Institute for Marine Microbiology, Max Planck Society;

/persons/resource/persons210363

Ferdelman,  T. G.
Department of Biogeochemistry, Max Planck Institute for Marine Microbiology, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)

Wegener13.pdf
(Publisher version), 637KB

Supplementary Material (public)
There is no public supplementary material available
Citation

Xie, S. T., Lipp, J. S., Wegener, G., Ferdelman, T. G., & Hinrichs, K. U. (2013). Turnover of microbial lipids in the deep biosphere and growth of benthic archaeal populations. Proceedings of the National Academy of Sciences of the United States of America, 110(15), 6010-6014.


Cite as: https://hdl.handle.net/21.11116/0000-0001-C6F3-D
Abstract
Deep subseafloor sediments host a microbial biosphere with unknown impact on global biogeochemical cycles. This study tests previous evidence based on microbial intact polar lipids (IPLs) as proxies of live biomass, suggesting that Archaea dominate the marine sedimentary biosphere: We devised a sensitive radiotracer assay to measure the decay rate of ([C-14]glucosyl)-diphytanylglyceroldiether (GlcDGD) as an analog of archaeal IPLs in continental margin sediments. The degradation kinetics were incorporated in model simulations that constrained the fossil fraction of subseafloor IPLs and rates of archaeal turnover. Simulating the top 1 km in a generic continental margin sediment column, we estimated degradation rate constants of GlcDGD being one to two orders of magnitude lower than those of bacterial IPLs, with half-lives of GlcDGD increasing with depth to 310 ky. Given estimated microbial community turnover times of 1.6-73 ky in sediments deeper than 1 m, 50-96% of archaeal IPLs represent fossil signals. Consequently, previous lipid-based estimates of global subseafloor biomass probably are too high, and the widely observed dominance of archaeal IPLs does not rule out a deep biosphere dominated by Bacteria. Reverse modeling of existing concentration profiles suggest that archaeal IPL synthesis rates decline from around 1,000 pg.mL(-1) sediment.y(-1) at the surface to 0.2 pg.mL(-1).y(-1) at 1 km depth, equivalent to production of 7 x 10(5) to 140 archaeal cells.mL(-1) sediment.y(-1), respectively. These constraints on microbial growth are an important step toward understanding the relationship between the deep biosphere and the carbon cycle.