English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Expression of sulfatases in Rhodopirellula baltica and the diversity of sulfatases in the genus Rhodopirellula

MPS-Authors
/persons/resource/persons210852

Wegner,  C. E.
Microbial Genomics Group, Department of Molecular Ecology, Max Planck Institute for Marine Microbiology, Max Planck Society;

/persons/resource/persons210714

Richter-Heitmann,  T.
Department of Microbiology, Max Planck Institute for Marine Microbiology, Max Planck Society;

/persons/resource/persons210516

Klindworth,  A.
Microbial Genomics Group, Department of Molecular Ecology, Max Planck Institute for Marine Microbiology, Max Planck Society;

/persons/resource/persons210518

Klockow,  C.
Microbial Genomics Group, Department of Molecular Ecology, Max Planck Institute for Marine Microbiology, Max Planck Society;

/persons/resource/persons210715

Richter,  M.
Microbial Genomics Group, Department of Molecular Ecology, Max Planck Institute for Marine Microbiology, Max Planck Society;

/persons/resource/persons210403

Glöckner,  F. O.
Microbial Genomics Group, Department of Molecular Ecology, Max Planck Institute for Marine Microbiology, Max Planck Society;

/persons/resource/persons210437

Harder,  J.
Department of Microbiology, Max Planck Institute for Marine Microbiology, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Wegner, C. E., Richter-Heitmann, T., Klindworth, A., Klockow, C., Richter, M., Achstetter, T., et al. (2013). Expression of sulfatases in Rhodopirellula baltica and the diversity of sulfatases in the genus Rhodopirellula. Marine Genomics, 9, 51-61.


Cite as: https://hdl.handle.net/21.11116/0000-0001-C70F-F
Abstract
The whole genome sequence of Rhodopirellula baltica SH1(T), published nearly 10 years ago, already revealed a high amount of sulfatase genes. So far, little is known about the diversity and potential functions mediated by sulfatases in Planctomycetes. We combined in vivo and in silico techniques to gain insights into the ecophysiology of planktomycetal sulfatases. Comparative genomics of nine recently sequenced Rhodopirellula strains detected 1120 open reading frames annotated as sulfatases (Enzyme Commission number (EC) 3.1.6.*). These were clustered into 173 groups of orthologous and paralogous genes. To analyze the functional aspects, 708 sulfatase protein sequences from these strains were aligned with 67 sulfatase reference sequences of reviewed functionality. Our analysis yielded 22 major similarity clusters, but only five of these clusters contained Rhodopirellula sequences homologous to reference sequences, indicating a surprisingly high diversity. Exemplarily, R. baltica SH1(T) was grown on different sulfated polysaccharides, chondroitin sulfate, lambda-carrageenan and fucoidan. Subsequent gene expression analyses using whole genome microarrays revealed distinct sulfatase expression profiles based on substrates tested. This might be indicative for a high structural diversity of sulfated polysaccharides as potential substrates. The pattern of sulfatases in individual planctomycete species may reflect ecological niche adaptation. (c) 2012 Elsevier B.V. All rights reserved.