日本語
 
Help Privacy Policy ポリシー/免責事項
  詳細検索ブラウズ

アイテム詳細


公開

学術論文

Subcellular protein localization (cell envelope) in Phaeobacter inhibens DSM 17395

MPS-Authors
/persons/resource/persons210876

Wöhlbrand,  L.
Department of Microbiology, Max Planck Institute for Marine Microbiology, Max Planck Society;

/persons/resource/persons210697

Rabus,  R.
Department of Microbiology, Max Planck Institute for Marine Microbiology, Max Planck Society;

External Resource
There are no locators available
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
フルテキスト (公開)
公開されているフルテキストはありません
付随資料 (公開)
There is no public supplementary material available
引用

Koßmehl, S., Wöhlbrand, L., Drüppel, K., Feenders, C., Blasius, B., & Rabus, R. (2013). Subcellular protein localization (cell envelope) in Phaeobacter inhibens DSM 17395. Proteomics, 13, 2743-2760.


引用: https://hdl.handle.net/21.11116/0000-0001-C770-0
要旨
Phaeobacter inhibens DSM 17395 is a metabolically versatile, secondary metabolite producing and surface colonizing member of the alphaproteobacterial Roseobacter clade. Proteins compartmentalized across the Gram-negative cell envelope are expected to be relevant for the habitat success of P. inhibens DSM 17395. Subcellular fractionation was followed by gel- or nano-LCbased separation of proteins and peptides, respectively. Subsequent MS-based identification of in total 1187 proteins allowed allocation to cytoplasm (303 proteins), cytoplasmic membrane (346), periplasm (325), outer membrane (76), and extracellular milieu (22). Multidimensional scaling was used to visualize the spreading of heuristically allocated proteins across the five different compartments. Experimentally inferred subcellular protein localization was compared with PSORTb prediction of protein secretion and membrane localization. Determined subcellular localizations of identified proteins were interpreted to reconstruct the functional traits of the different cell envelope compartments, in particular protein secretion and sorting, direct effector molecule transit, and cell envelope biogenesis. From a proteogenomic perspective, functional prediction of 74 genes (including 17 coding for proteins of hitherto unknown function) could be refined.