English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Repeatedly Evolved Host-Specific Ectosymbioses between Sulfur-Oxidizing Bacteria and Amphipods Living in a Cave Ecosystem

MPS-Authors
/persons/resource/persons210701

Ramette,  A.
HGF MPG Joint Research Group for Deep Sea Ecology & Technology, Max Planck Institute for Marine Microbiology, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)

Ramette12.PDF
(Publisher version), 4MB

Supplementary Material (public)
There is no public supplementary material available
Citation

Bauermeister, J., Ramette, A., & Dattagupta, S. (2012). Repeatedly Evolved Host-Specific Ectosymbioses between Sulfur-Oxidizing Bacteria and Amphipods Living in a Cave Ecosystem. PLoS One, 7(11): e50254.


Cite as: https://hdl.handle.net/21.11116/0000-0001-C78C-1
Abstract
Ectosymbioses between invertebrates and sulfur-oxidizing bacteria are widespread in sulfidic marine environments and have evolved independently in several invertebrate phyla. The first example from a freshwater habitat, involving Niphargus ictus amphipods and filamentous Thiothrix ectosymbionts, was recently reported from the sulfide-rich Frasassi caves in Italy. Subsequently, two new Niphargus species, N. frasassianus and N. montanarius, were discovered within Frasassi and found to co-occur with N. ictus. Using a variety of microscopic and molecular techniques, we found that all three Frasassi-dwelling Niphargus species harbor Thiothrix ectosymbionts, which belong to three distinct phylogenetic clades (named T1, T2, and T3). T1 and T3 Thiothrix dominate the N. frasassianus ectosymbiont community, whereas T2 and T3 are prevalent on N. ictus and N. montanarius. Relative distribution patterns of the three ectosymbionts are host species-specific and consistent over different sampling locations and collection years. Free-living counterparts of T1–T3 are rare or absent in Frasassi cave microbial mats, suggesting that ectosymbiont transmission among Niphargus occurs primarily through inter- or intraspecific inoculations. Phylogenetic analyses indicate that the Niphargus-Thiothrix association has evolved independently at least two times. While ectosymbioses with T1 and T2 may have been established within Frasassi, T3 ectosymbionts seem to have been introduced to the cave system by Niphargus.