English
 
User Manual Privacy Policy Disclaimer Contact us
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Relative abundances of methane- and sulphur-oxidising symbionts in the gills of a cold seep mussel and link to their potential energy sources

MPS-Authors
/persons/resource/persons210346

Duperron,  S.
Microbial Habitat Group, Max Planck Institute for Marine Microbiology, Max Planck Society;

/persons/resource/persons210719

Ristova,  P. P.
HGF MPG Joint Research Group for Deep Sea Ecology & Technology, Max Planck Institute for Marine Microbiology, Max Planck Society;

/persons/resource/persons210857

Wenzhofer,  F.
HGF MPG Joint Research Group for Deep Sea Ecology & Technology, Max Planck Institute for Marine Microbiology, Max Planck Society;

/persons/resource/persons210280

Boetius,  A.
HGF MPG Joint Research Group for Deep Sea Ecology & Technology, Max Planck Institute for Marine Microbiology, Max Planck Society;

External Ressource
No external resources are shared
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Duperron, S., Guezi, H., Gaudron, S. M., Ristova, P. P., Wenzhofer, F., & Boetius, A. (2011). Relative abundances of methane- and sulphur-oxidising symbionts in the gills of a cold seep mussel and link to their potential energy sources. Geobiology, 9(6), 481-491.


Cite as: http://hdl.handle.net/21.11116/0000-0001-C8FB-3
Abstract
Bathymodiolus mussels are key species in many deep-sea chemosynthetic ecosystems. They often harbour two types of endosymbiotic bacteria in their gills, sulphur- and methane oxidisers. These bacteria take up sulphide and methane from the environment and provide energy to their hosts, supporting some of the most prolific ecosystems in the sea. In this study, we tested whether symbiont relative abundances in Bathymodiolus gills reflect variations in the highly spatially dynamic chemical environment of cold seep mussels. Samples of Bathymodiolus aff. boomerang were obtained from two cold seeps of the deep Gulf of Guinea, REGAB (5°47.86S, 9°42.69E, 3170 m depth) and DIAPIR (6°41.58S, 10°20.94E, 2700 m depth). Relative abundances of both symbiont types were measured by means of 3D fluorescence in situ hybridisation and image analysis and compared considering the local sulphide and methane concentrations and fluxes assessed via benthic chamber incubations. Specimens inhabiting areas with highest methane content displayed higher relative abundances of methane oxidisers. The bacterial abundances correlated also with carbon stable isotope signatures in the mussel tissue, suggesting a higher contribution of methane-derived carbon to the biomass of mussels harbouring higher densities of methane-oxidising symbionts. A dynamic adaptation of abundances of methanotrophs and thiotrophs in the gill could be a key factor optimising the energy yield for the symbiotic system and could explain the success of dual symbiotic mussels at many cold seeps and hydrothermal vents of the Atlantic and Gulf of Mexico.