English
 
User Manual Privacy Policy Disclaimer Contact us
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Phosphate oxygen isotopes: Insights into sedimentary phosphorus cycling from the Benguela upwelling system

MPS-Authors
/persons/resource/persons210296

Brunner,  B.
Department of Biogeochemistry, Max Planck Institute for Marine Microbiology, Max Planck Society;

/persons/resource/persons210363

Ferdelman,  T. G.
Department of Biogeochemistry, Max Planck Institute for Marine Microbiology, Max Planck Society;

/persons/resource/persons210892

Zabel,  M.
Department of Biogeochemistry, Max Planck Institute for Marine Microbiology, Max Planck Society;

External Ressource
No external resources are shared
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Goldhammer, T., Brunner, B., Bernasconi, S. M., Ferdelman, T. G., & Zabel, M. (2011). Phosphate oxygen isotopes: Insights into sedimentary phosphorus cycling from the Benguela upwelling system. Geochimica et Cosmochimica Acta, 75(13), 3741-3756.


Cite as: http://hdl.handle.net/21.11116/0000-0001-C949-B
Abstract
Marine sediments are the main sink in the oceanic phosphorus (P) cycle. The activity of benthic microorganisms is decisive for regeneration, reflux, or burial of inorganic phosphate (Pi), which has a strong impact on marine productivity. Recent formation of phosphorites on the continental shelf and a succession of different sedimentary environments make the Benguela upwelling system a prime region for studying the role of microbes in P biogeochemistry. The oxygen isotope signature of pore water phosphate (δ18OP) carries characteristic information of microbial P cycling: Intracellular turnover of phosphorylated biomolecules results in isotopic equilibrium with ambient water, while enzymatic regeneration of Pi from organic matter produces distinct offsets from equilibrium. The balance of these two processes is the major control for δ18OP. Our study assesses the importance of microbial P cycling relative to regeneration of Pi from organic matter from a transect across the Namibian continental shelf and slope by combining pore water chemistry (sulfate, sulfide, ferrous iron, Pi), steady-state turnover rate modeling, and oxygen isotope geochemistry of Pi. We found δ18OP values in a range from 12.8‰ to 26.6‰, both in equilibrium as well as pronounced disequilibrium with water. Our data show a trend towards regeneration signatures (disequilibrium) under low mineralization activity and low Pi concentrations, and microbial turnover signatures (equilibrium) under high mineralization activity and high Pi concentrations. These findings are opposite to observations from water column studies where regeneration signatures were found to coincide with high mineralization activity and high Pi concentrations. It appears that preferential Pi regeneration in marine sediments does not necessarily coincide with a disequilibrium δ18OP signature. We propose that microbial Pi uptake strategies, which are controlled by Pi availability, are decisive for the alteration of the isotope signature. This hypothesis is supported by the observation of efficient microbial Pi turnover (equilibrium signatures) in the phosphogenic sediments of the Benguela upwelling system.