English
 
User Manual Privacy Policy Disclaimer Contact us
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Pathways and regulation of carbon, sulfur and energy transfer in marine sediments overlying methane gas hydrates on the Opouawe Bank (New Zealand)

MPS-Authors
/persons/resource/persons210851

Wegener,  G.
HGF MPG Joint Research Group for Deep Sea Ecology & Technology, Max Planck Institute for Marine Microbiology, Max Planck Society;

External Ressource
No external resources are shared
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Dale, A. W., Sommer, S., Haeckel, M., Wallmann, K., Linke, P., Wegener, G., et al. (2010). Pathways and regulation of carbon, sulfur and energy transfer in marine sediments overlying methane gas hydrates on the Opouawe Bank (New Zealand). Geochimica et Cosmochimica Acta, 74(20), 5763-5784.


Cite as: http://hdl.handle.net/21.11116/0000-0001-CB28-E
Abstract
This study combines sediment geochemical analysis, in situ benthic lander deployments and numerical modeling to quantify the biogeochemical cycles of carbon and sulfur and the associated rates of Gibbs energy production at a novel methane seep. The benthic ecosystem is dominated by a dense population of tube-building ampharetid polychaetes and conspicuous microbial mats were unusually absent. A 1D numerical reaction-transport model, which allows for the explicit growth of sulfide and methane oxidizing microorganisms, was tuned to the geochemical data using a fluid advection velocity of 14 cm yr−1. The fluids provide a deep source of dissolved hydrogen sulfide and methane to the sediment with fluxes equal to 4.1 and 18.2 mmol m−2 d−1, respectively. Chemosynthetic biomass production in the subsurface sediment is estimated to be 2.8 mmol m−2 d−1 of C biomass. However, carbon and oxygen budgets indicate that chemosynthetic organisms living directly above or on the surface sediment have the potential to produce 12.3 mmol m−2 d−1 of C biomass. This autochthonous carbon source meets the ampharetid respiratory carbon demand of 23.2 mmol m−2 d−1 to within a factor of 2. By contrast, the contribution of photosynthetically-fixed carbon sources to ampharetid nutrition is minor (3.3 mmol m−2 d−1 of C). The data strongly suggest that mixing of labile autochthonous microbial detritus below the oxic layer sustains high measured rates of sulfate reduction in the uppermost 2 cm of the sulfidic sediment (100–200 nmol cm−3 d−1). Similar rates have been reported in the literature for other seeps, from which we conclude that autochthonous organic matter is an important substrate for sulfate reducing bacteria in these sediment layers. A system-scale energy budget based on the chemosynthetic reaction pathways reveals that up to 8.3 kJ m−2 d−1 or 96 mW m−2 of catabolic (Gibbs) energy is dissipated at the seep through oxidation reactions. The microorganisms mediating sulfide oxidation and anaerobic oxidation of methane (AOM) produce 95% and 2% of this energy flux, respectively. The low power output by AOM is due to strong bioenergetic constraints imposed on the reaction rate by the composition of the chemical environment. These constraints provide a high potential for dissolved methane efflux from the sediment (12.0 mmol m−2 d−1) and indicates a much lower efficiency of (dissolved) methane sequestration by AOM at seeps than considered previously. Nonetheless, AOM is able to consume a third of the ascending methane flux (5.9 mmol m−2 d−1 of CH4) with a high efficiency of energy expenditure (35 mmol CH4 kJ−1). It is further proposed that bioenergetic limitation of AOM provides an explanation for the non-zero sulfate concentrations below the AOM zone observed here and in other active and passive margin sediments.