English
 
User Manual Privacy Policy Disclaimer Contact us
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Thermophilic anaerobes in Arctic marine sediments induced to mineralize complex organic matter at high temperature

MPS-Authors
/persons/resource/persons210466

Hubert,  C.
Department of Biogeochemistry, Max Planck Institute for Marine Microbiology, Max Planck Society;

/persons/resource/persons210236

Arnosti,  C.
Department of Molecular Ecology, Max Planck Institute for Marine Microbiology, Max Planck Society;

/persons/resource/persons210294

Brüchert,  V.
Department of Biogeochemistry, Max Planck Institute for Marine Microbiology, Max Planck Society;

/persons/resource/persons210830

Vandieken,  V.
Department of Biogeochemistry, Max Planck Institute for Marine Microbiology, Max Planck Society;

/persons/resource/persons210489

Jørgensen,  B. B.
Department of Biogeochemistry, Max Planck Institute for Marine Microbiology, Max Planck Society;

External Ressource
No external resources are shared
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Hubert, C., Arnosti, C., Brüchert, V., Loy, A., Vandieken, V., & Jørgensen, B. B. (2010). Thermophilic anaerobes in Arctic marine sediments induced to mineralize complex organic matter at high temperature. Environmental Microbiology, 12(4), 1089-1104.


Cite as: http://hdl.handle.net/21.11116/0000-0001-CB4C-6
Abstract
Marine sediments harbour diverse populations of dormant thermophilic bacterial spores that become active in sediment incubation experiments at much higher than in situ temperature. This response was investigated in the presence of natural complex organic matter in sediments of two Arctic fjords, as well as with the addition of freeze-dried Spirulina or individual high-molecular-weight polysaccharides. During 50 degrees C incubation experiments, Arctic thermophiles catalysed extensive mineralization of the organic matter via extracellular enzymatic hydrolysis, fermentation and sulfate reduction. This high temperature-induced food chain mirrors sediment microbial processes occurring at cold in situ temperatures (near 0 degrees C), yet it is catalysed by a completely different set of microorganisms. Using sulfate reduction rates (SRR) as a proxy for organic matter mineralization showed that differences in organic matter reactivity determined the extent of the thermophilic response. Fjord sediments with higher in situ SRR also supported higher SRR at 50 degrees C. Amendment with Spirulina significantly increased volatile fatty acids production and SRR relative to unamended sediment in 50 degrees C incubations. Spirulina amendment also revealed temporally distinct sulfate reduction phases, consistent with 16S rRNA clone library detection of multiple thermophilic Desulfotomaculum spp. enriched at 50 degrees C. Incubations with four different fluorescently labelled polysaccharides at 4 degrees C and 50 degrees C showed that the thermophilic population in Arctic sediments produce a different suite of polymer-hydrolysing enzymes than those used in situ by the cold-adapted microbial community. Over time, dormant marine microorganisms like these are buried in marine sediments and might eventually encounter warmer conditions that favour their activation. Distinct enzymatic capacities for organic polymer degradation could allow specific heterotrophic populations like these to play a role in sustaining microbial metabolism in the deep, warm, marine biosphere.