User Manual Privacy Policy Disclaimer Contact us
  Advanced SearchBrowse




Book Chapter

Anaerobic Methane Oxidizers


Boetius,  A.
HGF MPG Joint Research Group for Deep Sea Ecology & Technology, Max Planck Institute for Marine Microbiology, Max Planck Society;


Knittel,  K.
Department of Molecular Ecology, Max Planck Institute for Marine Microbiology, Max Planck Society;

There are no locators available
Fulltext (public)
There are no public fulltexts available
Supplementary Material (public)
There is no public supplementary material available

Boetius, A., & Knittel, K. (2010). Anaerobic Methane Oxidizers. In K. N. Timmis (Ed.), Handbook of Hydrocarbon and Lipid Microbiology (pp. 2023-2032). Heidelberg: Springer-Verlag Berlin.

Cite as: http://hdl.handle.net/21.11116/0000-0001-CB74-8
Anaerobic methanotrophic archaea of the ANME clades -1, -2, -3 are cosmopolitan and ubiquitous in all environments on Earth where sulfate and methane intersect. Closely related gene sequences of anaerobic methanotrophs are found in subsurface and surface sediments, terrestrial, and marine settings or benthic and pelagic habitats. Although their diversity is limited, various subgroups of the ANME clades co-occur in most methane habitats. Microscopic analysis as well as quantitative PCR of their distribution has revealed the dominance of certain types within microniches in the environments, indicating an effect of environmental conditions on distribution. Diverse forms of associations between the different ANME subgroups and various partner bacteria have been microscopically identified by fluorescence in situ hybridization, and ANME cells have also been detected without a bacterial partner attached. However, the most common form of occurrence of ANME in hot spots of the anaerobic oxidation of methane are small shell-type consortia with sulfate-reducing bacteria as partners.