User Manual Privacy Policy Disclaimer Contact us
  Advanced SearchBrowse




Journal Article

Differences in Microphytobenthos and Macrofaunal Abundances Associated with Groundwater Discharge in the Intertidal Zone


Wasaka,  Hannelore
Marine Geochemistry Group, Max Planck Institute for Marine Microbiology, Max Planck Society;

External Ressource
No external resources are shared
Fulltext (public)

(Publisher version), 2MB

Supplementary Material (public)
There is no public supplementary material available

Wasaka, H., & Kim, G. (2010). Differences in Microphytobenthos and Macrofaunal Abundances Associated with Groundwater Discharge in the Intertidal Zone. Marine Ecology-Progress Series, 407, 159-172.

Cite as: http://hdl.handle.net/21.11116/0000-0001-CB8C-D
We investigated the impact of intertidal groundwater seepage on benthic microalgae and macrofauna in 4 study sites located in 2 large tidal flat ecosystems along the western coast of Korea by comparing the chemical, physical, and biological characteristics of ‘glossy’ seepage sites with those of nearby areas without visually distinct groundwater discharge (dry sediment surface). At 3 of the 4 sites, sediment properties as well as pore water chemistry were similar in groundwater seepage and dry areas. At the 4th study site, the groundwater seepage areas were more coarsegrained compared to the dry areas. Here, the groundwater seepage also had lower salinity and higher nutrient concentrations than the pore water of the dry area and the seawater in a nearby tide pool. Although diatoms were the dominant algal class in seepage and dry areas alike, the seepage areas in 3 of the sites had elevated contributions of other marker pigments such as chlorophyll (chl) b compared to the dry areas. Chl a concentrations were higher in all seepage areas compared to dry areas, and all dry areas had high pheophytina:chla ratios, indicating a substantial amount of degraded algal material. In the seepage areas of 3 of the sites, we found large numbers of the snail Batillaria cumingi, while crab burrows of Scopimera sp. were only present in the neighboring dry areas. Correlations of sediment chl a concentrations with physicochemical properties of the ambient pore water indicated that microphytobenthos responded specifically to groundwater seepage, which may provide shelter from desiccation and salt stress during emersion of the tidal flat. Our results suggest that globally common groundwater seepage significantly impacts the ecosystem structures and microphytobenthos production of the tidal flats.