English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Molecular characterization of bacteria associated with the trophosome and the tube of Lamellibrachia sp., a siboglinid annelid from cold seeps in the eastern Mediterranean

MPS-Authors
/persons/resource/persons210346

Duperron,  S.
Microbial Habitat Group, Max Planck Institute for Marine Microbiology, Max Planck Society;

/persons/resource/persons210257

de Beer,  D.
Permanent Research Group Microsensor, Max Planck Institute for Marine Microbiology, Max Planck Society;

/persons/resource/persons210280

Boetius,  A.
HGF MPG Joint Research Group for Deep Sea Ecology & Technology, Max Planck Institute for Marine Microbiology, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)

deBeer9.pdf
(Publisher version), 2MB

Supplementary Material (public)
There is no public supplementary material available
Citation

Duperron, S., de Beer, D., Zbinden, M., Boetius, A., Schipani, V., Kahil, N., et al. (2009). Molecular characterization of bacteria associated with the trophosome and the tube of Lamellibrachia sp., a siboglinid annelid from cold seeps in the eastern Mediterranean. FEMS Microbiology Ecology, 69(3), 395-409.


Cite as: https://hdl.handle.net/21.11116/0000-0001-CBD4-B
Abstract
Specimens of Lamellibrachia (Annelida: Siboglinidae) were recently discovered at cold seeps in the eastern Mediterranean. In this study, we have investigated the phylogeny and function of intracellular bacterial symbionts inhabiting the trophosome of specimens of Lamellibrachia sp. from the Amon mud volcano, as well as the bacterial assemblages associated with their tube. The dominant intracellular symbiont of Lamellibrachia sp. is a gammaproteobacterium closely related to other sulfide-oxidizing tubeworm symbionts. In vivo uptake experiments show that the tubeworm relies on sulfide for its metabolism, and does not utilize methane. Bacterial communities associated with the tube form biofilms and occur from the anterior to the posterior end of the tube. The diversity of 16S rRNA gene phylotypes includes representatives from the same divisions previously identified from the tube of the vent species Riftia pachyptila, and others commonly found at seeps and vents.