日本語
 
Help Privacy Policy ポリシー/免責事項
  詳細検索ブラウズ

アイテム詳細


公開

学術論文

In Situ Technologies for Studying Deep-Sea Hotspot Ecosystems

MPS-Authors
/persons/resource/persons210280

Boetius,  A.
HGF MPG Joint Research Group for Deep Sea Ecology & Technology, Max Planck Institute for Marine Microbiology, Max Planck Society;

/persons/resource/persons210857

Wenzhöfer,  F.
HGF MPG Joint Research Group for Deep Sea Ecology & Technology, Max Planck Institute for Marine Microbiology, Max Planck Society;

External Resource
There are no locators available
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
フルテキスト (公開)

Boetius9.pdf
(出版社版), 222KB

付随資料 (公開)
There is no public supplementary material available
引用

Boetius, A., & Wenzhöfer, F. (2009). In Situ Technologies for Studying Deep-Sea Hotspot Ecosystems. Oceanography, 22(1 Sp. Iss. Sp. Iss. SI), 177-177.


引用: https://hdl.handle.net/21.11116/0000-0001-CC6A-3
要旨
Cold seeps, hydrothermal vents, deep water coral reefs, and submarine canyon systems are hotspot habitats characterized by intermediate to high fluid advection. They are shaped by a complex interplay of physical, biological, geochemical, and geological processes. Biogeochemical and physicochemical gradients in these ecosystems are frequently extremely steep and temporally and spatially variable. Zones of elevated microbial activity, such as the methane-sulfate interface at cold-seep sites, usually encompass no more than a few millimeters. Recovery of samples for further shipboard analysis from such hotspot zones generally causes severe artifacts in the biogeochemical gradients. Hence, to quantify chemical gradients, microbial processes, and transport rates in deep-sea hotspot ecosystems, we have developed and operated a variety of specialized in situ instruments (Figure 1).