English
 
User Manual Privacy Policy Disclaimer Contact us
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Biogeochemistry of a deep-sea whale fall: sulfate reduction, sulfide efflux and methanogenesis

MPS-Authors
/persons/resource/persons210824

Treude,  T.
Flux Group, Max Planck Institute for Marine Microbiology, Max Planck Society;

/persons/resource/persons210857

Wenzhöfer,  F.
HGF MPG Joint Research Group for Deep Sea Ecology & Technology, Max Planck Institute for Marine Microbiology, Max Planck Society;

/persons/resource/persons210310

Carney,  E.
Department of Biogeochemistry, Max Planck Institute for Marine Microbiology, Max Planck Society;

/persons/resource/persons210546

Krüger,  M.
Department of Microbiology, Max Planck Institute for Marine Microbiology, Max Planck Society;

/persons/resource/persons210280

Boetius,  A.
HGF MPG Joint Research Group for Deep Sea Ecology & Technology, Max Planck Institute for Marine Microbiology, Max Planck Society;

External Ressource
No external resources are shared
Fulltext (public)

Treude9.pdf
(Publisher version), 1012KB

Supplementary Material (public)
There is no public supplementary material available
Citation

Treude, T., Smith, C. R., Wenzhöfer, F., Carney, E., Bernardino, A. F., Hannides, A. K., et al. (2009). Biogeochemistry of a deep-sea whale fall: sulfate reduction, sulfide efflux and methanogenesis. Marine Ecology-Progress Series, 382, 1-21.


Cite as: http://hdl.handle.net/21.11116/0000-0001-CC9B-B
Abstract
Deep-sea whale falls create sulfidic habitats supporting chemoautotrophic communities, but microbial processes underlying the formation of such habitats remain poorly evaluated. Microbial degradation processes (sulfate reduction, methanogenesis) and biogeochemical gradients were studied in a whale-fall habitat created by a 30 t whale carcass deployed at 1675 m depth for 6 to 7 yr on the California margin. A variety of measurements were conducted including photomosaicking, microsensor measurements, radiotracer incubations and geochemical analyses. Sediments were studied at different distances (0 to 9 m) from the whale fall. Highest microbial activities and steepest vertical geochemical gradients were found within 0.5 m of the whale fall, revealing ex situ sulfate reduction and in vitro methanogenesis rates of up to 717 and 99 mmol m–2 d–1, respectively. In sediments containing whale biomass, methanogenesis was equivalent to 20 to 30% of sulfate reduction. During in vitro sediment studies, sulfide and methane were produced within days to weeks after addition of whale biomass, indicating that chemosynthesis is promoted at early stages of the whale fall. Total sulfide production from sediments within 0.5 m of the whale fall was 2.1 ± 3 and 1.5 ± 2.1 mol d–1 in Years 6 and 7, respectively, of which ~200 mmol d–1 were available as free sulfide. Sulfate reduction in bones was much lower, accounting for a total availability of ~10 mmol sulfide d–1. Over periods of at least 7 yr, whale falls can create sulfidic conditions similar to other chemosynthetic habitats such as cold seeps and hydrothermal vents.