English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

A heat-induced molecular signature in marine dissolved organic matter

MPS-Authors
/persons/resource/persons210334

Dittmar,  T.
Marine Geochemistry Group, Max Planck Institute for Marine Microbiology, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Dittmar, T., & Paeng, J. (2009). A heat-induced molecular signature in marine dissolved organic matter. Nature Geoscience, 2, 175-179.


Cite as: https://hdl.handle.net/21.11116/0000-0001-CCE3-9
Abstract
The bulk of sea water is an aqueous solution of inorganic salts and gases. However, if it was just this, life as we know it would not exist. In addition to this inorganic component, at least tens of thousands of organic molecules — collectively known as dissolved organic matter — exist in picomole amounts in each litre of sea water. Dissolved organic matter is important for aquatic food webs and, integrated over the entire volume of the world's oceans, contains roughly as much carbon as all living biota on land and in the ocean combined. Yet, the cycling of dissolved organic matter in the ocean is not well understood. Recent progress in analytical chemistry has allowed the characterization of dissolved organic matter at the molecular level in unprecedented detail, revealing that a significant proportion has been thermally altered, either in deep sediments or through combustion on land with later delivery to the sea. Thermal alteration may explain, at least in part, the resistance of oceanic dissolved organic matter to microbial decomposition.