English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Anaerobic degradation of p-ethylphenol by "Aromatoleum aromaticum" strain EbN1: Pathway, regulation, and involved proteins

MPS-Authors
/persons/resource/persons210876

Woehlbrand,  L.
Department of Microbiology, Max Planck Institute for Marine Microbiology, Max Planck Society;

/persons/resource/persons210868

Wilkes,  H.
Department of Microbiology, Max Planck Institute for Marine Microbiology, Max Planck Society;

/persons/resource/persons210697

Rabus,  R.
Department of Microbiology, Max Planck Institute for Marine Microbiology, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)

Woehlbrand8.pdf
(Publisher version), 658KB

Supplementary Material (public)
There is no public supplementary material available
Citation

Woehlbrand, L., Wilkes, H., Halder, T., & Rabus, R. (2008). Anaerobic degradation of p-ethylphenol by "Aromatoleum aromaticum" strain EbN1: Pathway, regulation, and involved proteins. Journal of Bacteriology, 190(16), 5699-5709.


Cite as: https://hdl.handle.net/21.11116/0000-0001-CD46-A
Abstract
The denitrifying “Aromatoleum aromaticum” strain EbN1 was demonstrated to utilize p-ethylphenol under anoxic conditions and was suggested to employ a degradation pathway which is reminiscent of known anaerobic ethylbenzene degradation in the same bacterium: initial hydroxylation of p-ethylphenol to 1-(4-hydroxyphenyl)-ethanol followed by dehydrogenation to p-hydroxyacetophenone. Possibly, subsequent carboxylation and thiolytic cleavage yield p-hydroxybenzoyl-coenzyme A (CoA), which is channeled into the central benzoyl-CoA pathway. Substrate-specific formation of three of the four proposed intermediates was confirmed by gas chromatographic-mass spectrometric analysis and also by applying deuterated p-ethylphenol. Proteins suggested to be involved in this degradation pathway are encoded in a single large operon-like structure (∼15 kb). Among them are a p-cresol methylhydroxylase-like protein (PchCF), two predicted alcohol dehydrogenases (ChnA and EbA309), a biotin-dependent carboxylase (XccABC), and a thiolase (TioL). Proteomic analysis (two-dimensional difference gel electrophoresis) revealed their specific and coordinated upregulation in cells adapted to anaerobic growth with p-ethylphenol and p-hydroxyacetophenone (e.g., PchF up to 29-fold). Coregulated proteins of currently unknown function (e.g., EbA329) are possibly involved in p-ethylphenol- and p-hydroxyacetophenone-specific solvent stress responses and related to other aromatic solvent-induced proteins of strain EbN1.