English
 
User Manual Privacy Policy Disclaimer Contact us
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Nitric oxide microsensor for high spatial resolution measurements in biofilms and sediments

MPS-Authors
/persons/resource/persons210762

Schreiber,  F.
Department of Biogeochemistry, Max Planck Institute for Marine Microbiology, Max Planck Society;

/persons/resource/persons210683

Polerecky,  L.
Permanent Research Group Microsensor, Max Planck Institute for Marine Microbiology, Max Planck Society;

/persons/resource/persons210257

de Beer,  D.
Permanent Research Group Microsensor, Max Planck Institute for Marine Microbiology, Max Planck Society;

External Ressource
No external resources are shared
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Schreiber, F., Polerecky, L., & de Beer, D. (2008). Nitric oxide microsensor for high spatial resolution measurements in biofilms and sediments. Analytical Chemistry, 80(4), 1152-1158.


Cite as: http://hdl.handle.net/21.11116/0000-0001-CDA8-B
Abstract
Nitric oxide (NO) is a ubiquitous biomolecule that is known as a signaling compound in eukaryotes and prokaryotes. In addition, NO is involved in all conversions of the biogeochemical nitrogen cycle:  denitrification, nitrification, and the anaerobic oxidation of ammonium (Anammox). Until now, NO has not been measured with high spatial resolution within microbial communities, such as biofilms, sediments, aggregates, or microbial mats, because the available sensors are not robust enough and their spatial resolution is insufficient. Here we describe the fabrication and application of a novel Clark-type NO microsensor with an internal reference electrode and a guard anode. The NO microsensor has a spatial resolution of 60−80 μm, a sensitivity of 2 pA μM-1, and a detection limit of ∼30 nM. Hydrogen sulfide (H2S) was found to be a major interfering compound for the electrochemical detection of NO. The application of the novel NO microsensor to nitrifying biofilms and marine sediments revealed dynamic NO concentration profiles with peaks in the oxic parts of the samples. The local concentrations suggested that NO may be an important bioactive compound in natural environments. The consumption and production of NO occurs in separate regions of stratified microbial communities and indicates that it is linked to distinct biogeochemical cycles.