English
 
User Manual Privacy Policy Disclaimer Contact us
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Oxygen dynamics and flow patterns of Dysidea avara (Porifera : Demospongiae)

MPS-Authors
/persons/resource/persons210453

Hoffmann,  F.
HGF MPG Joint Research Group for Deep Sea Ecology & Technology, Max Planck Institute for Marine Microbiology, Max Planck Society;

/persons/resource/persons210728

Roy,  H.
HGF MPG Joint Research Group for Deep Sea Ecology & Technology, Max Planck Institute for Marine Microbiology, Max Planck Society;

/persons/resource/persons210257

de Beer,  D.
Permanent Research Group Microsensor, Max Planck Institute for Marine Microbiology, Max Planck Society;

External Ressource
No external resources are shared
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Schlaeppy, M. L., Hoffmann, F., Roy, H., Wijffels, R. H., Mendola, D., Sidri, M., et al. (2007). Oxygen dynamics and flow patterns of Dysidea avara (Porifera: Demospongiae). Journal of the Marine Biological Association of the United Kingdom, 87(6), 1677-1682.


Cite as: http://hdl.handle.net/21.11116/0000-0001-CDD6-7
Abstract
The present publication presents oxygen properties and pumping behaviour of Dysidea avara. Oxygen profiles were measured near and inside the atrial space of the osculum with a Clark-type micro-electrode. Pumping sponges had profiles with oxygen concentrations marginally lower than that of the aquarium water. In contrast, diffusive profiles, with a clear boundary layer above the sponge surface, and oxygen penetrating only 0.5 mm into the sponge tissue, were typically that of a sponge which was not pumping. Diffusive oxygen flux at the sponge surface was 4.2 μmol O2 cm2 d1 and the calculated volumetric filtration rate was 0.3 cm3 water cm3 sponge min1. The oxygen concentration in the osculum was temporally fluctuating between 95 and 59% saturation at a frequency of approximately once per minute. The combination of static oxygen micro-electrode measurements and particle tracking velocimetry (PTV) allowed us to simultaneously observe fine-scale oxygen fluxes and oscular flow patterns in active sponges, even at extremely low pumping rates. Oscular oxygen concentration and flow were correlated but not always synchronous to the second. Particle tracking velocimetry was used to visualize the flow field around the sponge and to distinguish sponge-generated flow from the unidirectional current in a flow-cell.