日本語
 
Help Privacy Policy ポリシー/免責事項
  詳細検索ブラウズ

アイテム詳細


公開

学術論文

Age constraints on the origin and growth history of a deep-water coral mound in the northeast Atlantic drilled during Integrated Ocean Drilling Program Expedition 307

MPS-Authors
/persons/resource/persons210363

Ferdelman,  T. G.
Department of Biogeochemistry, Max Planck Institute for Marine Microbiology, Max Planck Society;

External Resource
There are no locators available
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
フルテキスト (公開)
公開されているフルテキストはありません
付随資料 (公開)
There is no public supplementary material available
引用

Kano, A., Ferdelman, T. G., Williams, T., Henriet, J. P., Ishikawa, T., Kawagoe, N., Talkashima, C., Kakizaki, Y., Abe, K., Sakai, S., Browning, E. L., & Li, X. H. (2007). Age constraints on the origin and growth history of a deep-water coral mound in the northeast Atlantic drilled during Integrated Ocean Drilling Program Expedition 307. Geology, 35(11), 1051-1054.


引用: https://hdl.handle.net/21.11116/0000-0001-CDDE-F
要旨
Sr isotope stratigraphy provides a new age model for the first complete section drilled through a deep-water coral mound. The 155-m-long section from Challenger Mound in the Porcupine Sea-bight, southwest of Ireland, is on Miocene siliciclastics and consists entirely of sediments bearing well-preserved cold-water coral Lophelia pertusa. The 87Sr/86Sr values of 28 coral specimens from the mound show an upward-increasing trend, correspond to ages from 2.6 to 0.5 Ma, and identify a significant hiatus from ca. 1.7 to 1.0 Ma at 23.6 m below seafloor. The age of the basal mound sediments coincides with the intensification of Northern Hemisphere glaciations that set up the modern stratification of the northeast Atlantic and enabled coral growth. Mound growth persisted throughout glacial-interglacial fluctuations, reached a maximum rate (24 cm/k.y.) ca. 2.0 Ma, and ceased at 1.7 Ma. Unlike other buried mounds in Porcupine Seabight, Challenger Mound was only partly covered during its growth interruption, and growth restarted ca. 1.0 Ma.