English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Assessing diversity and biogeography of aerobic anoxygenic phototrophic bacteria in surface waters of the Atlantic and Pacific Oceans using the Global Ocean Sampling expedition metagenomes

MPS-Authors
/persons/resource/persons210812

Teeling,  H.
Department of Molecular Ecology, Max Planck Institute for Marine Microbiology, Max Planck Society;

/persons/resource/persons210846

Weber,  Marc
Microbial Genomics Group, Department of Molecular Ecology, Max Planck Institute for Marine Microbiology, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Yutin, N., Suzuki, M. T., Teeling, H., Weber, M., Venter, J. C., Rusch, D. B., et al. (2007). Assessing diversity and biogeography of aerobic anoxygenic phototrophic bacteria in surface waters of the Atlantic and Pacific Oceans using the Global Ocean Sampling expedition metagenomes. Environmental Microbiology, 9(6), 1464-1475.


Cite as: https://hdl.handle.net/21.11116/0000-0001-CE50-D
Abstract
Aerobic anoxygenic photosynthetic bacteria (AAnP) were recently proposed to be significant contributors to global oceanic carbon and energy cycles. However, AAnP abundance, spatial distribution, diversity and potential ecological importance remain poorly understood. Here we present metagenomic data from the Global Ocean Sampling expedition indicating that AAnP diversity and abundance vary in different oceanic regions. Furthermore, we show for the first time that the composition of AAnP assemblages change between different oceanic regions, with specific bacterial assemblages adapted to open ocean or coastal areas respectively. Our results support the notion that marine AAnP populations are complex and dynamic, and compose an important fraction of bacterioplankton assemblages in certain oceanic areas.