English
 
User Manual Privacy Policy Disclaimer Contact us
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Diversity, activity, and abundance of sulfate-reducing bacteria in saline and hypersaline soda lakes

MPS-Authors
/persons/resource/persons210623

Mussman,  M.
Department of Molecular Ecology, Max Planck Institute for Marine Microbiology, Max Planck Society;

/persons/resource/persons210624

Muyzer,  G.
Department of Molecular Ecology, Max Planck Institute for Marine Microbiology, Max Planck Society;

External Ressource
No external resources are shared
Fulltext (public)

Mussmann7.pdf
(Publisher version), 502KB

Supplementary Material (public)
There is no public supplementary material available
Citation

Foti, M., Sorokin, D. Y., Lomans, B., Mussman, M., Zacharova, E. E., Pimenov, N. V., et al. (2007). Diversity, activity, and abundance of sulfate-reducing bacteria in saline and hypersaline soda lakes. Applied and Environmental Microbiology, 73(7), 2093-2100.


Cite as: http://hdl.handle.net/21.11116/0000-0001-CE74-5
Abstract
Soda lakes are naturally occurring highly alkaline and saline environments. Although the sulfur cycle is one of the most active element cycles in these lakes, little is known about the sulfate-reducing bacteria (SRB). In this study we investigated the diversity, activity, and abundance of SRB in sediment samples and enrichment cultures from a range of (hyper)saline soda lakes of the Kulunda Steppe in southeastern Siberia in Russia. For this purpose, a polyphasic approach was used, including denaturing gradient gel electrophoresis of dsr gene fragments, sulfate reduction rate measurements, serial dilutions, and quantitative real-time PCR (qPCR). Comparative sequence analysis revealed the presence of several novel clusters of SRB, mostly affiliated with members of the order Desulfovibrionales and family Desulfobacteraceae. We detected sulfate reducers and observed substantial sulfate reducing rates (between 12 and 423 micromol/dm(3) day(-1)) for most lakes, even at a salinity of 475 g/liter. Enrichments were obtained at salt saturating conditions (4 M Na(+)), using H(2) or volatile fatty acids as electron donors, and an extremely halophilic SRB, strain ASO3-1, was isolated. Furthermore, a high dsr gene copy number of 10(8) cells per ml was detected in a hypersaline lake by qPCR. Our results indicate the presence of diverse and active SRB communities in these extreme ecosystems.