English
 
User Manual Privacy Policy Disclaimer Contact us
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Synthesis of magnetite nanoparticles for bio- and nanotechnology: Genetic engineering and biomimetics of bacterial magnetosomes

MPS-Authors
/persons/resource/persons210561

Lang,  C.
Department of Microbiology, Max Planck Institute for Marine Microbiology, Max Planck Society;

/persons/resource/persons210766

Schüler,  D.
Department of Microbiology, Max Planck Institute for Marine Microbiology, Max Planck Society;

/persons/resource/persons121274

Faivre,  D.
Department of Microbiology, Max Planck Institute for Marine Microbiology, Max Planck Society;

External Ressource
No external resources are shared
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Lang, C., Schüler, D., & Faivre, D. (2007). Synthesis of magnetite nanoparticles for bio- and nanotechnology: Genetic engineering and biomimetics of bacterial magnetosomes. Macromolecular Bioscience, 7(2), 144-151.


Cite as: http://hdl.handle.net/21.11116/0000-0001-CE96-E
Abstract
Magnetotactic bacteria (MTB) have the ability to navigate along the Earth's magnetic field. This so-called magnetotaxis is a result of the presence of magnetosomes, organelles which comprise nanometer-sized intracellular crystals of magnetite (Fe(3)O(4)) enveloped by a membrane. Because of their unique characteristics, magnetosomes have a high potential for nano- and biotechnological applications, which require a specifically designed particle surface. The functionalization of magnetosomes is possible either by chemical modification of purified particles or by genetic engineering of magnetosome membrane proteins. The second approach is potentially superior to chemical approaches as a large variety of biological functions such as protein tags, fluorophores, and enzymes may be directly incorporated in a site-specific manner during magnetosome biomineralization. An alternative to the bacterial production of magnetosomes are biomimetic approaches, which aim to mimic the bacterial biomineralization pathway in vitro. In MTB a number of magnetosome proteins with putative functions in the biomineralization of the nanoparticles have been identified by genetic and biochemical approaches. The initial results obtained by several groups indicate that some of these proteins have an impact on nanomagnetite properties in vitro. In this article the key features of magnetosomes are discussed, an overview of their potential applications are given, and different strategies are proposed for the functionalization of magnetosome particles and for the biomimetism of their biomineralization pathway.