English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Aerobic and anaerobic methanotrophs in the Black Sea water column

MPS-Authors
/persons/resource/persons210765

Schubert,  C. J.
Department of Biogeochemistry, Max Planck Institute for Marine Microbiology, Max Planck Society;

/persons/resource/persons210631

Neretin,  L. N.
Department of Biogeochemistry, Max Planck Institute for Marine Microbiology, Max Planck Society;

/persons/resource/persons210750

Schippers,  A.
Department of Biogeochemistry, Max Planck Institute for Marine Microbiology, Max Planck Society;

/persons/resource/persons210347

Durisch-Kaiser,  E.
Department of Biogeochemistry, Max Planck Institute for Marine Microbiology, Max Planck Society;

/persons/resource/persons210556

Kuypers,  M. M. M.
Department of Biogeochemistry, Max Planck Institute for Marine Microbiology, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Schubert, C. J., Coolen, M. J. L., Neretin, L. N., Schippers, A., Abbas, B., Durisch-Kaiser, E., et al. (2006). Aerobic and anaerobic methanotrophs in the Black Sea water column. Environmental Microbiology, 8(10), 1844-1856.


Cite as: https://hdl.handle.net/21.11116/0000-0001-CF10-4
Abstract
Inputs of CH(4) from sediments, including methane seeps on the continental margin and methane-rich mud volcanoes on the abyssal plain, make the Black Sea the world's largest surface water reservoir of dissolved methane and drive a high rate of aerobic and anaerobic oxidation of methane in the water column. Here we present the first combined organic geochemical and molecular ecology data on a water column profile of the western Black Sea. We show that aerobic methanotrophs type I are responsible for methane oxidation in the oxic water column and ANME-1- and ANME-2-related organisms for anaerobic methane oxidation. The occurrence of methanotrophs type I cells in the anoxic zone suggests that inactive cells settle to deeper waters. Molecular and biomarker results suggest that a clear distinction between the occurrence of ANME-1- and ANME-2-related lineages exists, i.e. ANME-1-related organisms are responsible for anaerobic methane oxidation below 600 m water depth, whereas ANME-2-related organisms are responsible for this process in the anoxic water column above approximately 600 m water depth.