English
 
User Manual Privacy Policy Disclaimer Contact us
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Succinate dehydrogenase functioning by a reverse redox loop mechanism and fumarate reductase in sulphate-reducing bacteria

MPS-Authors
/persons/resource/persons210403

Glöckner,  F. O.
Microbial Genomics Group, Department of Molecular Ecology, Max Planck Institute for Marine Microbiology, Max Planck Society;

External Ressource
No external resources are shared
Fulltext (public)

Gloeckner6.pdf
(Publisher version), 362KB

Supplementary Material (public)
There is no public supplementary material available
Citation

Zaunmuller, T., Kelly, D. J., Glöckner, F. O., & Unden, G. (2006). Succinate dehydrogenase functioning by a reverse redox loop mechanism and fumarate reductase in sulphate-reducing bacteria. Microbiology, 152, 2443-2453.


Cite as: http://hdl.handle.net/21.11116/0000-0001-CF3E-2
Abstract
Sulphate- or sulphur-reducing bacteria with known or draft genome sequences (Desulfovibrio vulgaris, Desulfovibrio desulfuricans G20, Desulfobacterium autotrophicum [draft], Desulfotalea psychrophila and Geobacter sulfurreducens) all contain sdhCAB or frdCAB gene clusters encoding succinate : quinone oxidoreductases. frdD or sdhD genes are missing. The presence and function of succinate dehydrogenase versus fumarate reductase was studied. Desulfovibrio desulfuricans (strain Essex 6) grew by fumarate respiration or by fumarate disproportionation, and contained fumarate reductase activity. Desulfovibrio vulgaris lacked fumarate respiration and contained succinate dehydrogenase activity. Succinate oxidation by the menaquinone analogue 2,3-dimethyl-1,4-naphthoquinone depended on a proton potential, and the activity was lost after degradation of the proton potential. The membrane anchor SdhC contains four conserved His residues which are known as the ligands for two haem B residues. The properties are very similar to succinate dehydrogenase of the Gram-positive (menaquinone-containing) Bacillus subtilis, which uses a reverse redox loop mechanism in succinate : menaquinone reduction. It is concluded that succinate dehydrogenases from menaquinone-containing bacteria generally require a proton potential to drive the endergonic succinate oxidation. Sequence comparison shows that the SdhC subunit of this type lacks a Glu residue in transmembrane helix IV, which is part of the uncoupling E-pathway in most non-electrogenic FrdABC enzymes.