English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

In situ fluxes and zonation of microbial activity in surface sediments of the Håkon Mosby Mud Volcano

MPS-Authors
/persons/resource/persons210257

de Beer,  D.
Permanent Research Group Microsensor, Max Planck Institute for Marine Microbiology, Max Planck Society;

/persons/resource/persons210636

Niemann,  H.
HGF MPG Joint Research Group for Deep Sea Ecology & Technology, Max Planck Institute for Marine Microbiology, Max Planck Society;

/persons/resource/persons210874

Witte,  U.
Flux Group, Max Planck Institute for Marine Microbiology, Max Planck Society;

/persons/resource/persons210280

Boetius,  A.
HGF MPG Joint Research Group for Deep Sea Ecology & Technology, Max Planck Institute for Marine Microbiology, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)

deBeer6.pdf
(Publisher version), 365KB

Supplementary Material (public)
There is no public supplementary material available
Citation

de Beer, D., Sauter, E., Niemann, H., Kaul, N., Foucher, J. P., Witte, U., et al. (2006). In situ fluxes and zonation of microbial activity in surface sediments of the Håkon Mosby Mud Volcano. Limnology and Oceanography, 51(3), 1315-1331.


Cite as: https://hdl.handle.net/21.11116/0000-0001-CF67-3
Abstract
From the Hakon Mosby Mud Volcano (HMMV) on the southwest Barents Sea shelf, gas and fluids are expelled by active mud volcanism. We studied the mass transfer phenomena and microbial conversions in the surface layers using in situ microsensor measurements and on retrieved cores. The HMMV consists of three concentric habitats: a central area with gray mud, a surrounding area covered by white mats of big sulfide oxidizing filamentous bacteria (Beggiatoa), and a peripheral area colonized by symbiontic tube worms (Pogonophora). A fourth habitat comprised gray microbial mats near gas seeps. The differences between these four methane‐fueled habitats are best explained by different transport rates of sulfate into the sediments and porewater upflow rates. The upflow velocities were estimated by two independent methods at 3‐6 m yr‐1 in the central area and 0.3‐1 m yr‐1 in Beggiatoa mats. In the central area no sulfide was found, indicating that the rapidly rising sulfate‐free fluids caused sulfate limitation that inhibited anaerobic oxidation of methane (AOM). Under Beggiatoa mats a steep sulfide peak was found at 2 to 3 cm below the seafloor (bsf), most likely due to AOM. All sulfide was oxidized anaerobically, possibly through nitrate reduction by Beggiatoa. The Beggiatoa mats were dominated by a single filamentous morphotype with a diameter of 10 mm and abundant sulfur inclusions. A high diversity of sulfide oxidizer morphotypes was observed in a grayish microbial mat near gas vents, where aerobic sulfide oxidation was important. The sediments colonized by Pogonophora were influenced by bioventilation, allowing sulfate penetration and AOM to 70 cm bsf. The HMMV is a unique and diverse ecosystem, the structure and functioning of which is mainly controlled by pore‐water flow.