English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Combined approach for characterization of uncultivated magnetotactic bacteria from various aquatic environments

MPS-Authors
/persons/resource/persons210377

Flies,  C. B.
Department of Microbiology, Max Planck Institute for Marine Microbiology, Max Planck Society;

/persons/resource/persons210664

Peplies,  J.
Microbial Genomics Group, Department of Molecular Ecology, Max Planck Institute for Marine Microbiology, Max Planck Society;

/persons/resource/persons210766

Schüler,  D.
Department of Microbiology, Max Planck Institute for Marine Microbiology, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)

Flies5.pdf
(Publisher version), 483KB

Supplementary Material (public)
There is no public supplementary material available
Citation

Flies, C. B., Peplies, J., & Schüler, D. (2005). Combined approach for characterization of uncultivated magnetotactic bacteria from various aquatic environments. Applied and Environmental Microbiology, 71(5), 2723-2731.


Cite as: https://hdl.handle.net/21.11116/0000-0001-D03B-2
Abstract
Both magnetic collection and “race track” purification techniques were highly effective for selective enrichment of magnetotactic bacteria (MTB) from complex communities, as suggested by amplified ribosomal DNA restriction analysis and denaturing gradient gel electrophoresis combined with sequence analysis of 16S rRNA genes. Using these purification methods, the occurrence and diversity of MTB in microcosms from various marine and freshwater environments were assayed by using a combined microscopic, molecular, and cultivation approach. Most microcosms were dominated by magnetotactic cocci. Consistently, the majority of retrieved 16S RNA sequences were affiliated with a distinct cluster in the Alphaproteobacteria. Within this lineage the levels of sequence divergence were <1 to 11%, indicating genus-level diversity between magnetotactic cocci from various microcosms, as well as between MTB from different stages of succession of the same microcosms. The community composition in microscosms underwent drastic succession during incubation, and significant heterogeneities were observed between microcosms from the same environmental sources. A novel magnetotactic rod (MHB-1) was detected in a sediment sample from a lake in northern Germany by fluorescence in situ hybridization. MHB-1 falls into the Nitrospira phylum, displaying 91% 16S rRNA sequence similarity to “Magnetobacterium bavaricum.” In extensive cultivation attempts, we failed to isolate MHB-1, as well as most other MTB present in our samples. However, although magnetotactic spirilla were not frequently observed in the enrichments, 10 novel isolates of the genus Magnetospirillum which had not routinely been isolated in pure culture before were obtained.