English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Thiomicrospira arctica sp nov and Thiomicrospira psychrophila sp nov., psychrophilic, obligately chemolithoautotrophic, sulfur-oxidizing bacteria isolated from marine Arctic sediments

MPS-Authors
/persons/resource/persons210522

Knittel,  K.
Department of Molecular Ecology, Max Planck Institute for Marine Microbiology, Max Planck Society;

/persons/resource/persons210552

Kuever,  J.
Department of Microbiology, Max Planck Institute for Marine Microbiology, Max Planck Society;

/persons/resource/persons210607

Meyerdierks,  A.
Department of Molecular Ecology, Max Planck Institute for Marine Microbiology, Max Planck Society;

/persons/resource/persons210604

Meinke,  R.
Department of Molecular Ecology, Max Planck Institute for Marine Microbiology, Max Planck Society;

/persons/resource/persons210230

Amann,  R.
Department of Molecular Ecology, Max Planck Institute for Marine Microbiology, Max Planck Society;

/persons/resource/persons210287

Brinkhoff,  T.
Department of Molecular Ecology, Max Planck Institute for Marine Microbiology, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)

Knittel5.pdf
(Publisher version), 144KB

Supplementary Material (public)
There is no public supplementary material available
Citation

Knittel, K., Kuever, J., Meyerdierks, A., Meinke, R., Amann, R., & Brinkhoff, T. (2005). Thiomicrospira arctica sp nov and Thiomicrospira psychrophila sp nov., psychrophilic, obligately chemolithoautotrophic, sulfur-oxidizing bacteria isolated from marine Arctic sediments. International Journal of Systematic and Evolutionary Microbiology, 55, 781-786.


Cite as: https://hdl.handle.net/21.11116/0000-0001-D065-2
Abstract
Two psychrophilic, chemolithoautotrophic, sulfur-oxidizing bacteria were isolated from marine Arctic sediments sampled off the coast of Svalbard with thiosulfate as the electron donor and CO(2) as carbon source. Comparative analysis of 16S rRNA gene sequences suggested that the novel strains, designated SVAL-D(T) and SVAL-E(T), represent members of the genus Thiomicrospira. Further genotypic (DNA-DNA relatedness, DNA G+C content) and phenotypic characterization revealed that the strains represent members of two novel species. Both organisms are obligately autotrophic and strictly aerobic. Nitrate was not used as an electron acceptor. Chemolithoautotrophic growth was observed with thiosulfate, tetrathionate and sulfur. The temperature limits for growth of both strains were between -2 degrees C and 20.8 degrees C, with optima of 11.5-13.2 degrees C (SVAL-E(T)) and 14.6-15.4 degrees C (SVAL-D(T)), which is about 13-15 degrees C lower than the optima of all other recognized Thiomicrospira species. The maximum growth rate on thiosulfate at 14 degrees C was 0.14 h(-1) for strain SVAL-E(T) and 0.2 h(-1) for strain SVAL-D(T). Major fatty acids of SVAL-D(T) are C(16 : 1), C(18 : 0) and C(16 : 0), and those of SVAL-E(T) are C(16 : 1), C(18 : 1), C(16 : 0) and C(14 : 1). Cells of SVAL-D(T) and SVAL-E(T) are rods, like those of their closest relatives. To our knowledge the novel strains are the first psychrophilic, chemolithoautotrophic, sulfur-oxidizing bacteria so far described. The names Thiomicrospira arctica sp. nov. and Thiomicrospira psychrophila sp. nov. are proposed for SVAL-E(T) (=ATCC 700955(T)=DSM 13458(T)) and SVAL-D(T) (=ATCC 700954(T)=DSM 13453(T)), respectively.