日本語
 
Help Privacy Policy ポリシー/免責事項
  詳細検索ブラウズ

アイテム詳細


公開

学術論文

Environmental regulation of the anaerobic oxidation of methane: a comparison of ANME-I and ANME-II communities

MPS-Authors
/persons/resource/persons210626

Nauhaus,  K.
Department of Microbiology, Max Planck Institute for Marine Microbiology, Max Planck Society;

/persons/resource/persons210824

Treude,  T.
Flux Group, Max Planck Institute for Marine Microbiology, Max Planck Society;

/persons/resource/persons210280

Boetius,  A.
HGF MPG Joint Research Group for Deep Sea Ecology & Technology, Max Planck Institute for Marine Microbiology, Max Planck Society;

/persons/resource/persons210546

Krüger,  M.
Department of Microbiology, Max Planck Institute for Marine Microbiology, Max Planck Society;

External Resource
There are no locators available
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
フルテキスト (公開)
公開されているフルテキストはありません
付随資料 (公開)
There is no public supplementary material available
引用

Nauhaus, K., Treude, T., Boetius, A., & Krüger, M. (2005). Environmental regulation of the anaerobic oxidation of methane: a comparison of ANME-I and ANME-II communities. Environmental Microbiology, 7(1), 98-106.


引用: https://hdl.handle.net/21.11116/0000-0001-D081-1
要旨
The anaerobic oxidation of methane (AOM) is one of the major sinks for methane on earth and is known to be mediated by at least two phylogenetically different groups of anaerobic methanotrophic Archaea (ANME-I and ANME-II). We present the first comparative in vitro study of the environmental regulation and physiology of these two methane-oxidizing communities, which occur naturally enriched in the anoxic Black Sea (ANME-I) and at Hydrate Ridge (ANME-II). Both types of methanotrophic communities are associated with sulfate-reducing-bacteria (SRB) and oxidize methane anaerobically in a 1:1 ratio to sulfate reduction (SR). They responded sensitively to elevated methane partial pressures with increased substrate turnover. The ANME-II-dominated community showed significantly higher cell-specific AOM rates. Besides sulfate, no other electron acceptor was used for AOM. The processes of AOM and SR could not be uncoupled by feeding the SRB with electron donors such as acetate, formate or molecular hydrogen. AOM was completely inhibited by the addition of bromoethanesulfonate in both communities, indicating the participation of methanogenic enzymes in the process. Temperature influenced the intensity of AOM, with ANME-II being more adapted to cold temperatures than ANME-I. The variation of other environmental parameters, such as sulfate concentration, pH and salinity, did not influence the activity of both communities. In conclusion, the ecological niches of methanotrophic Archaea seem to be mainly defined by the availability of methane and sulfate, but it remains open which additional factors lead to the dominance of ANME-I or -II in the environment.