English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Microbial sulfate reduction in deep sediments of the Southwest Pacific (ODP Leg 181, Sites 1119-1125): evidence from stable sulfur isotope fractionation and pore water modeling

MPS-Authors
/persons/resource/persons210281

Böttcher,  M. E.
Department of Biogeochemistry, Max Planck Institute for Marine Microbiology, Max Planck Society;

/persons/resource/persons210295

Brumsack,  H. J.
Department of Biogeochemistry, Max Planck Institute for Marine Microbiology, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Böttcher, M. E., Khim, B. K., Suzuki, A., Gehre, M., Wortmann, U. G., & Brumsack, H. J. (2004). Microbial sulfate reduction in deep sediments of the Southwest Pacific (ODP Leg 181, Sites 1119-1125): evidence from stable sulfur isotope fractionation and pore water modeling. Marine Geology, 205(1-4), 249-260.


Cite as: https://hdl.handle.net/21.11116/0000-0001-D157-1
Abstract
Interstitial water samples from seven ODP sites (Leg 181, Sites 1119–1125) of the southwestern Pacific Ocean have been analyzed for the stable sulfur isotopic composition of dissolved sulfate along with major and minor ions. Sulfate from the interstitial fluids (δ34S values between +20.7 and +60‰ vs. the SO2-based Vienna–Canyon Diablo troilite standard) was enriched in 34S with respect to modern sea water (δ34S≈+20.6‰) indicating that microbial sulfate reduction takes place to different extents at all investigated sites. Microbial sulfate reduction (MSR) was found at all sites, the intensity depending on the availability of organic matter which is controlled by paleo-sedimentation conditions (sedimentation rate, presence of turbidites) and productivity. Microbial net sulfate reduction was additionally confirmed by modeling interstitial water sulfate profiles. Areal net sulfate reduction rates up to 14 mmol m−2 yr−1 have been calculated which were positively related to sedimentation rates. Total reduced inorganic sulfur (TRIS; essentially pyrite) as a product of microbial sulfate reduction was isotopically characterized in squeeze cake samples and gave δ34S values between −51 and +9‰ indicating pyrite formation both close to the sediment–water interface and later diagenetic contributions.