Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Rapid wave-driven advective pore water exchange in a permeable coastal sediment

MPG-Autoren
/persons/resource/persons210687

Precht,  E.
Flux Group, Max Planck Institute for Marine Microbiology, Max Planck Society;

/persons/resource/persons210468

Huettel,  M.
Flux Group, Max Planck Institute for Marine Microbiology, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Precht, E., & Huettel, M. (2004). Rapid wave-driven advective pore water exchange in a permeable coastal sediment. Journal of Sea Research, 51(2), 93-107.


Zitierlink: https://hdl.handle.net/21.11116/0000-0001-D16F-7
Zusammenfassung
In this study we present in-situ measurements of pore water flow velocities in a coastal sandy sediment (permeability=3.65×10−10 m2). The advective pore water flows were driven by the interaction of oscillating boundary flows with sediment wave ripples, (amplitude=7 cm, wavelength=30 to 50 cm). The measurements were carried out in the Mediterranean Sea at 50 to 70 cm water depth during a phase of very low wave energy (max. wave amplitude=10 cm). An optode technique is introduced that permits direct pore water flow measurements using a fluorescent tracer. Near the sediment surface (0.5 cm depth) pore water reached velocities exceeding 40 cm h−1. Thus, advective transport exceeded transport by molecular diffusion by at least 3 orders of magnitude. Based on the pore water velocity measurements and ripple spacing, we calculate that 140 L m−2 d−1 are filtered through the sediment. Pore water visualisation experiments revealed a flow field with intrusion of water in the ripple troughs and pore water release at the ripple crests. The wave-driven water flow through the sediment, thus, was directly linked to the wave-generated sediment topography, and its spatial dimensions. These results show that surface waves cause water filtration through permeable sediments at water depths smaller than half the wavelength. We conclude that surface gravity waves constitute an important hydromechanical process that may convert large areas of the continental shelves into expansive filter systems. Surface gravity waves thereby could affect suspended particle concentration and cycling of matter in the shelf.