English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Archae-Like Genes for C1-Transfer Enzymes in Planctomycetes: Phylogenetic Implications of Their Unexpected Presence in This Phylum

MPS-Authors
/persons/resource/persons210248

Bauer,  M.
Microbial Genomics Group, Department of Molecular Ecology, Max Planck Institute for Marine Microbiology, Max Planck Society;

/persons/resource/persons210582

Lombardot,  T.
Department of Molecular Ecology, Max Planck Institute for Marine Microbiology, Max Planck Society;

/persons/resource/persons210812

Teeling,  H.
Department of Molecular Ecology, Max Planck Institute for Marine Microbiology, Max Planck Society;

/persons/resource/persons210230

Amann,  R.I.
Department of Molecular Ecology, Max Planck Institute for Marine Microbiology, Max Planck Society;

/persons/resource/persons210403

Glöckner,  F.O.
Microbial Genomics Group, Department of Molecular Ecology, Max Planck Institute for Marine Microbiology, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Bauer, M., Lombardot, T., Teeling, H., Naomi, W., Amann, R., & Glöckner, F. (2004). Archae-Like Genes for C1-Transfer Enzymes in Planctomycetes: Phylogenetic Implications of Their Unexpected Presence in This Phylum. Journal of Molecular Evolution, 59, 571-586.


Cite as: https://hdl.handle.net/21.11116/0000-0001-D1AF-E
Abstract
The unexpected presence of archaea-like genes for tetrahydromethanopterin (H4MPT)-dependent enzymes in the completely sequence geiome of the aerobic marine planctomycete Pirellula sp. strain 1 ("Rhodopirellula baltica") and in the currently sequenced genome of the aerobic freshwater planctomycete Gemmata obscuriglobus strain UQM2246 revives the discussion on the origin of these genes in the bacterial domain. We compared the genomic arrangement of these genes in Planctomyetes and methylotrophic proteobacteria and perormed a phylogenetic analysis of the encoded protein sequences to address the question whether the genes have been present in the common ancestor of Bacteria and Archaea or were transferred laterally from the archaeal to the bacterial domain and herein. Although this question could not be solved using the data presented here, some constraints on the evolution of the genes involved in archaeal and )acterial H4MPT-dependent C1-transfer may be proposed: (i) lateral gene transfer (LGT) from Archea to a common ancestor of Proteobacteria and Planctomycetes seems more likely than the presence of the genes in the common ancestor of Bacteria and Archaea; (ii) a single event of interdomain LGT can e favored over two independent events; and (iii) the irchacal donor of the genes might have been a repesentative of the Methanosarcinales. In the bacterial domain, the acquired genes evolved according to distinct environmental and metabolic constraints, reflected by specific rearrangements of gene order, gene recruitment, and gene duplication, with subsequent functional specialization. During the course of evolution, genes were lost from some planctomycete genomes or replaced by orthologous genes from proteobacterial lineages.