日本語
 
Help Privacy Policy ポリシー/免責事項
  詳細検索ブラウズ

アイテム詳細


公開

学術論文

Regulation of bacterial sulfate reduction and hydrogen sulfide fluxes in the central Namibian coastal upwelling zone

MPS-Authors
/persons/resource/persons210294

Brüchert,  V.
Department of Biogeochemistry, Max Planck Institute for Marine Microbiology, Max Planck Society;

/persons/resource/persons210489

Jørgensen,  B. B.
Department of Biogeochemistry, Max Planck Institute for Marine Microbiology, Max Planck Society;

/persons/resource/persons210752

Schlösser,  M.
Max Planck Institute for Marine Microbiology, Max Planck Society;

External Resource
There are no locators available
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
フルテキスト (公開)
公開されているフルテキストはありません
付随資料 (公開)
There is no public supplementary material available
引用

Brüchert, V., Jørgensen, B. B., Neumann, K., Riechmann, D., Schlösser, M., & Schulz, H. (2003). Regulation of bacterial sulfate reduction and hydrogen sulfide fluxes in the central Namibian coastal upwelling zone. Geochimica et Cosmochimica Acta, 67(23), 4505-4518.


引用: https://hdl.handle.net/21.11116/0000-0001-D1DD-A
要旨
The coastal upwelling system off central Namibia is one of the most productive regions of the oceans and is characterized by frequently occurring shelf anoxia with severe effects for the benthic life and fisheries. We present data on water column dissolved oxygen, sulfide, nitrate and nitrite, pore water profiles for dissolved sulfide and sulfate,35S-sulfate reduction rates, as well as bacterial counts of large sulfur bacteria from 20 stations across the continental shelf and slope. The stations covered two transects and included the inner shelf with its anoxic and extremely oxygen-depleted bottom waters, the oxygen minimum zone on the continental slope, and the lower continental slope below the oxygen minimum zone. High concentrations of dissolved sulfide, up to 22 mM, in the near-surface sediments of the inner shelf result from extremely high rates of bacterial sulfate reduction and the low capacity to oxidize and trap sulfide. The inner shelf break marks the seaward border of sulfidic bottom waters, and separates two different regimes of bacterial sulfate reduction. In the sulfidic bottom waters on the shelf, up to 55% of sulfide oxidation is mediated by the large nitrate-storing sulfur bacteria, Thiomargarita spp. The filamentous relatives Beggiatoa spp. occupy low-O2 bottom waters on the outer shelf. Sulfide oxidation on the slope is apparently not mediated by the large sulfur bacteria. The data demonstrate the importance of large sulfur bacteria, which live close to the sediment-water interface and reduce the hydrogen sulfide flux to the water column. Modeling of pore water sulfide concentration profiles indicates that sulfide produced by bacterial sulfate reduction in the uppermost 16 cm of sediment is sufficient to account for the total flux of hydrogen sulfide to the water column. However, the total pool of hydrogen sulfide in the water column is too large to be explained by steady state diffusion across the sediment-water interface. Episodic advection of hydrogen sulfide, possibly triggered by methane eruptions, may contribute to hydrogen sulfide in the water column.