English
 
User Manual Privacy Policy Disclaimer Contact us
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

In situ experimental evidence of the fate of a phytodetritus pulse at the abyssal sea floor

MPS-Authors
/persons/resource/persons210874

Witte,  U.
Flux Group, Max Planck Institute for Marine Microbiology, Max Planck Society;

/persons/resource/persons210857

Wenzhöfer,  F.
HGF MPG Joint Research Group for Deep Sea Ecology & Technology, Max Planck Institute for Marine Microbiology, Max Planck Society;

/persons/resource/persons210280

Boetius,  A.
HGF MPG Joint Research Group for Deep Sea Ecology & Technology, Max Planck Institute for Marine Microbiology, Max Planck Society;

/persons/resource/persons210489

Jørgensen,  B. B.
Department of Biogeochemistry, Max Planck Institute for Marine Microbiology, Max Planck Society;

External Ressource
No external resources are shared
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Witte, U., Wenzhöfer, F., Sommer, S., Boetius, A., Heinz, P., Aberle, N., et al. (2003). In situ experimental evidence of the fate of a phytodetritus pulse at the abyssal sea floor. Nature, 424(6950), 763-766.


Cite as: http://hdl.handle.net/21.11116/0000-0001-D201-0
Abstract
More than 50% of the Earth' s surface is sea floor below 3,000 m of water. Most of this major reservoir in the global carbon cycle and final repository for anthropogenic wastes is characterized by severe food limitation. Phytodetritus is the major food source for abyssal benthic communities, and a large fraction of the annual food load can arrive in pulses within a few days1,2. Owing to logistical constraints, the available data concerning the fate of such a pulse are scattered3,4 and often contradictory5,6,7,8,9,10, hampering global carbon modelling and anthropogenic impact assessments. We quantified (over a period of 2.5 to 23 days) the response of an abyssal benthic community to a phytodetritus pulse, on the basis of 11 in situ experiments. Here we report that, in contrast to previous hypotheses5,6,7,8,9,10,11, the sediment community oxygen consumption doubled immediately, and that macrofauna were very important for initial carbon degradation. The retarded response of bacteria and Foraminifera, the restriction of microbial carbon degradation to the sediment surface, and the low total carbon turnover distinguish abyssal from continental-slope ‘deep-sea’ sediments.