English
 
User Manual Privacy Policy Disclaimer Contact us
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Book Chapter

Anaerobic degradation of hydrocarbons with sulphate as electron acceptor

MPS-Authors
/persons/resource/persons210862

Widdel,  F.
Department of Microbiology, Max Planck Institute for Marine Microbiology, Max Planck Society;

/persons/resource/persons210621

Musat,  F.
Department of Microbiology, Max Planck Institute for Marine Microbiology, Max Planck Society;

/persons/resource/persons210522

Knittel,  K.
Department of Molecular Ecology, Max Planck Institute for Marine Microbiology, Max Planck Society;

/persons/resource/persons210393

Galushko,  A.
Department of Microbiology, Max Planck Institute for Marine Microbiology, Max Planck Society;

External Ressource
No external resources are shared
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Widdel, F., Musat, F., Knittel, K., & Galushko, A. (2007). Anaerobic degradation of hydrocarbons with sulphate as electron acceptor. In L. Barton, & W. A. Hamilton (Eds.), Sulphate-Reducing Bacteria: Environmental and Engineered Systems (pp. 265-303). Cambridge: Cambridge University Press.


Cite as: http://hdl.handle.net/21.11116/0000-0001-D3D0-5
Abstract
Sulphate-reducing bacteria (SRB), or more generally speaking sulphate-reducing prokaryotes (SRP), are terminal oxidizers in the natural recycling of bio-organic compounds to CO2 in anoxic environments, in particular in marine sediments. SRP play this geochemically important role because they make use of a globally abundant electron acceptor, sulphate (in seawater up to 28 mM), and possess numerous degradative (oxidative) capacities with respect to electron donors. The study of the degradative potentials of SRP via de novo enrichment (including direct counting) and isolation from natural samples has been of interest over some decades and formed the basis for our knowledge of the phylogenetic diversity of SRP. Common electron donors and carbon sources of SRP are the low-molecular mass products from the primary anaerobic (fermentative) breakdown of polysaccharides, proteins, lipids and other substances of dead biomass. Several of the involved degradative capacities, for instance complete oxidation or the channelling of branched-chain fatty acids or aromatic compounds into the central metabolism, require special enzymatic reactions (for overview see Rabus et al., 2000) which are not encountered in fermentative bacteria. The study of such and other metabolic capacities in SRP has led to the recognition of principles of general importance or heuristic value in our understanding of the biochemistry and energetics of anaerobes.