English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Paper

Detection of O4 absorption around 328 nm and 419 nm in measured atmospheric absorption spectra

MPS-Authors
/persons/resource/persons187728

Lampel,  J.
Satellite Remote Sensing, Max Planck Institute for Chemistry, Max Planck Society;

/persons/resource/persons101349

Wagner,  T.
Satellite Remote Sensing, Max Planck Institute for Chemistry, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Lampel, J., Zielcke, J., Schmitt, S., Pöhler, D., Frieß, U., Platt, U., et al. (2017). Detection of O4 absorption around 328 nm and 419 nm in measured atmospheric absorption spectra. Atmospheric Chemistry and Physics Discussions, 17. doi:10.5194/acp-2017-639.


Cite as: https://hdl.handle.net/11858/00-001M-0000-002E-0480-7
Abstract
Retrieving the column of an absorbing trace gas from spectral data requires that all absorbers in the corresponding wavelength range are sufficiently well known. This is especially important for the retrieval of weak absorbers, whose absorptions are often in the 10-4 range. Previous publications on the absorptions of the oxygen dimer O2-O2 (or short: O4) list absorption peaks at 328 nm and 419 nm, for which no spectrally resolved literature cross-sections are available. As these absorptions potentially influence the spectral retrieval of various trace gases, such as HCHO, BrO, OClO and IO, their shape and magnitude needs to be quantified. We assume that the shape of the absorption peaks at 328 nm and 419 nm can be approximated by their respective neighboring absorption peaks. Using this approach we obtain estimates for the wavelength of the absorption and its magnitude. Using Longpath Differential Optical Absorption Spectroscopy (LP-DOAS) observations and Multi-Axis (MAX)-DOAS observations, we estimate the peak absorption cross-sections of O4 to be (1.7 ± 0.2) x 10-47 cm5 molec-2 and determine the wavelength of its maximum at 328.51 ± 0.15 nm. For the absorption at 419.0 ± 0.4 nm a peak O4 cross-section value is determined as (3.7 ± 2.7) x 10-48 cm5 molec-2.