Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Structural Dynamics upon Photoexcitation in a Spin Crossover Crystal Probed with Femtosecond Electron Diffraction

MPG-Autoren
/persons/resource/persons136088

Jiang,  Yifeng
Miller Group, Atomically Resolved Dynamics Department, Max Planck Institute for the Structure and Dynamics of Matter, Max Planck Society;

/persons/resource/persons197908

Müller-Werkmeister,  Henrike
Miller Group, Atomically Resolved Dynamics Department, Max Planck Institute for the Structure and Dynamics of Matter, Max Planck Society;

/persons/resource/persons136057

Zhang,  Dongfang
Miller Group, Atomically Resolved Dynamics Department, Max Planck Institute for the Structure and Dynamics of Matter, Max Planck Society;

/persons/resource/persons136024

Miller,  R. J. Dwayne
Miller Group, Atomically Resolved Dynamics Department, Max Planck Institute for the Structure and Dynamics of Matter, Max Planck Society;

Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Jiang, Y., Liu, L. C., Müller-Werkmeister, H., Lu, C., Zhang, D., Field, R. L., et al. (2017). Structural Dynamics upon Photoexcitation in a Spin Crossover Crystal Probed with Femtosecond Electron Diffraction. Angewandte Chemie, International Edition in English, 56(25), 7130-7134. doi:10.1002/anie.201702497.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-002E-0CF8-6
Zusammenfassung
Photoexcitation of spin crossover (SCO) complexes can trigger extensive electronic spin transitions and transformation of molecular structure. However, the precise nature of the associated ultrafast structural dynamics remains elusive, especially in the solid state. Here, we studied a single-crystal SCO material with femtosecond electron diffraction (FED). The unique capability of FED allows us to directly probe atomic motions and to track ultrafast structural changes within a crystal lattice. By monitoring the time-dependent changes of the Bragg reflections, we observed the formation of a photoinduced structure similar to the thermally induced high-spin state. The data and refinement calculations indicate the global structural reorganization within 2.3 ps, as the metal–ligand bond distribution narrows during intramolecular vibrational energy redistribution (IVR) driving the intermolecular rearrangement. Three independent dynamical group are identified to model the structural dynamics upon photoinduced SCO.