Deutsch
 
Benutzerhandbuch Datenschutzhinweis Impressum Kontakt
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Forschungspapier

DE-PACRR: Exploring Layers Inside the PACRR Model

MPG-Autoren
/persons/resource/persons206666

Yates,  Andrew
Databases and Information Systems, MPI for Informatics, Max Planck Society;

/persons/resource/persons101776

Hui,  Kai
Databases and Information Systems, MPI for Informatics, Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)

arXiv:1706.08746.pdf
(Preprint), 4MB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Yates, A., & Hui, K. (2017). DE-PACRR: Exploring Layers Inside the PACRR Model. Retrieved from http://arxiv.org/abs/1706.08746.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-002E-06BE-D
Zusammenfassung
Recent neural IR models have demonstrated deep learning's utility in ad-hoc information retrieval. However, deep models have a reputation for being black boxes, and the roles of a neural IR model's components may not be obvious at first glance. In this work, we attempt to shed light on the inner workings of a recently proposed neural IR model, namely the PACRR model, by visualizing the output of intermediate layers and by investigating the relationship between intermediate weights and the ultimate relevance score produced. We highlight several insights, hoping that such insights will be generally applicable.