English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Sequential bottom-up assembly of mechanically stabilized synthetic cells by microfluidics

MPS-Authors
/persons/resource/persons140010

Weiss,  Marian
Cellular Biophysics, Max Planck Institute for Medical Research, Max Planck Society;

/persons/resource/persons185617

Frohnmayer,  Johannes Patrick
Cellular Biophysics, Max Planck Institute for Medical Research, Max Planck Society;
Biophysical Chemistry, Institute of Physical Chemistry, University of Heidelberg, 69120 Heidelberg, Germany;

/persons/resource/persons211300

Benk,  Lucia Theresa
Cellular Biophysics, Max Planck Institute for Medical Research, Max Planck Society;

/persons/resource/persons211302

Haller,  Barbara
Cellular Biophysics, Max Planck Institute for Medical Research, Max Planck Society;

/persons/resource/persons75624

Janiesch,  Jan-Willi
Cellular Biophysics, Max Planck Institute for Medical Research, Max Planck Society;
Biophysical Chemistry, Institute of Physical Chemistry, University of Heidelberg, 69120 Heidelberg, Germany;

/persons/resource/persons84351

Platzman,  Ilia
Cellular Biophysics, Max Planck Institute for Medical Research, Max Planck Society;
Biophysical Chemistry, Institute of Physical Chemistry, University of Heidelberg, 69120 Heidelberg, Germany;

/persons/resource/persons76135

Spatz,  Joachim P.
Cellular Biophysics, Max Planck Institute for Medical Research, Max Planck Society;
Biophysical Chemistry, Institute of Physical Chemistry, University of Heidelberg, 69120 Heidelberg, Germany;

Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Weiss, M., Frohnmayer, J. P., Benk, L. T., Haller, B., Janiesch, J.-W., Heitkamp, T., et al. (2018). Sequential bottom-up assembly of mechanically stabilized synthetic cells by microfluidics. Nature Materials, 17, 89-96. doi:10.1038/nmat5005.


Cite as: https://hdl.handle.net/11858/00-001M-0000-002E-0AA2-B
Abstract
Compartments for the spatially and temporally controlled assembly of biological processes are essential towards cellular life. Synthetic mimics of cellular compartments based on lipid-based protocells lack the mechanical and chemical stability to allow their manipulation into a complex and fully functional synthetic cell. Here, we present a high-throughput microfluidic method to generate stable, defined sized liposomes termed ‘droplet-stabilized giant unilamellar vesicles (dsGUVs)’. The enhanced stability of dsGUVs enables the sequential loading of these compartments with biomolecules, namely purified transmembrane and cytoskeleton proteins by microfluidic pico-injection technology. This constitutes an experimental demonstration of a successful bottom-up assembly of a compartment with contents that would not self-assemble to full functionality when simply mixed together. Following assembly, the stabilizing oil phase and droplet shells are removed to release functional self-supporting protocells to an aqueous phase, enabling them to interact with physiologically relevant matrices.