Deutsch
 
Benutzerhandbuch Datenschutzhinweis Impressum Kontakt
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Artificial hagfish protein fibers with ultra-high and tunable stiffness

MPG-Autoren
/persons/resource/persons211345

Horbelt,  Nils
Matthew Harrington, Biomaterialien, Max Planck Institute of Colloids and Interfaces, Max Planck Society;

/persons/resource/persons121387

Harrington,  Matthew J.
Matthew Harrington, Biomaterialien, Max Planck Institute of Colloids and Interfaces, Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Fu, J., Guerette, P. A., Pavesi, A., Horbelt, N., Lim, C. T., Harrington, M. J., et al. (2017). Artificial hagfish protein fibers with ultra-high and tunable stiffness. Nanoscale, 9(35), 12908-12915. doi:10.1039/C7NR02527K.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-002E-17A7-7
Zusammenfassung
Stiff fibers are used as reinforcing phases in a wide range of high-performance composite materials. Silk is one of the most widely studied bio-fibers, but alternative materials with specific advantages are also being explored. Among these, native hagfish (Eptatretus stoutii) slime thread is an attractive protein-based polymer. These threads consist of coiled-coil intermediate filaments (IFs) as nano-scale building blocks, which can be transformed into extended [small beta]-sheet-containing chains upon draw-processing, resulting in fibers with impressive mechanical performance. Here, we report artificial hagfish threads produced by recombinant protein expression, which were subsequently self-assembled into coiled-coil nanofilaments, concentrated, and processed into [small beta]-sheet-rich fibers by a "picking-up" method. These artificial fibers experienced mechanical performance enhancement during draw-processing. We exploited the lysine content to covalently cross-link the draw-processed fibers and obtained moduli values (E) in tension as high as [similar]20 GPa, which is stiffer than most reported artificial proteinaceous materials.