Deutsch
 
Benutzerhandbuch Datenschutzhinweis Impressum Kontakt
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

ABC-SysBio-approximate Bayesian computation in Python with GPU support.

MPG-Autoren
/persons/resource/persons208298

Liepe,  J.
Research Group of Quantitative and System Biology, MPI for Biophysical Chemistry, Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)

2491564.pdf
(Verlagsversion), 234KB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Liepe, J., Barnes, C., Cule, E., Erguler, K., Kirk, P., Toni, T., et al. (2010). ABC-SysBio-approximate Bayesian computation in Python with GPU support. Bioinformatics, 26(14), 1797-1799. doi:10.1093/bioinformatics/btq278.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-002E-0EF6-9
Zusammenfassung
Motivation: The growing field of systems biology has driven demand for flexible tools to model and simulate biological systems. Two established problems in the modeling of biological processes are model selection and the estimation of associated parameters. A number of statistical approaches, both frequentist and Bayesian, have been proposed to answer these questions. Results: Here we present a Python package, ABC-SysBio, that implements parameter inference and model selection for dynamical systems in an approximate Bayesian computation (ABC) framework. ABC-SysBio combines three algorithms: ABC rejection sampler, ABC SMC for parameter inference and ABC SMC for model selection. It is designed to work with models written in Systems Biology Markup Language (SBML). Deterministic and stochastic models can be analyzed in ABC-SysBio.