English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Nucleosome-Chd1 structure and implications for chromatin remodelling.

MPS-Authors
/persons/resource/persons200064

Farnung,  L.
Department of Molecular Biology, MPI for Biophysical Chemistry, Max Planck Society;

/persons/resource/persons196569

Vos,  S. M.
Department of Molecular Biology, MPI for Biophysical Chemistry, Max Planck Society;

/persons/resource/persons211536

Wigge,  C.
Department of Molecular Biology, MPI for Biophysical Chemistry, Max Planck Society;

/persons/resource/persons127020

Cramer,  P.
Department of Molecular Biology, MPI for Biophysical Chemistry, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)

2492495_Suppl_1.htm
(Supplementary material), 41KB

2492495_Suppl_2.do
(Supplementary material), 141KB

2492495_Suppl_3.htm
(Supplementary material), 8KB

Citation

Farnung, L., Vos, S. M., Wigge, C., & Cramer, P. (2017). Nucleosome-Chd1 structure and implications for chromatin remodelling. Nature, 550(7677), 539-542. doi:10.1038/nature24046.


Cite as: https://hdl.handle.net/11858/00-001M-0000-002E-1822-9
Abstract
Chromatin-remodelling factors change nucleosome positioning and facilitate DNA transcription, replication, and repair. The conserved remodelling factor chromodomain-helicase-DNA binding protein 1(Chd1) can shift nucleosomes and induce regular nucleosome spacing. Chd1 is required for the passage of RNA polymerase IIthrough nucleosomes and for cellular pluripotency. Chd1 contains the DNA-binding domains SANT and SLIDE, a bilobal motor domain that hydrolyses ATP, and a regulatory double chromodomain. Here we report the cryo-electron microscopy structure of Chd1 from the yeast Saccharomyces cerevisiae bound to a nucleosome at a resolution of 4.8 Å. Chd1 detaches two turns of DNA from the histone octamer and binds between the two DNA gyres in a state poised for catalysis. The SANT and SLIDE domains contact detached DNA around superhelical location (SHL) -7 of the first DNA gyre. The ATPase motor binds the second DNA gyre at SHL +2 and is anchored to the N-terminal tail of histone H4, as seen in a recent nucleosome-Snf2 ATPase structure. Comparisons with published results reveal that the double chromodomain swings towards nucleosomal DNA at SHL +1, resulting in ATPase closure. The ATPase can then promote translocation of DNA towards the nucleosome dyad, thereby loosening the first DNA gyre and remodelling the nucleosome. Translocation may involve ratcheting of the two lobes of the ATPase, which is trapped in a pre- or post-translocation state in the absence or presence, respectively, of transition state-mimicking compounds.