Deutsch
 
Benutzerhandbuch Datenschutzhinweis Impressum Kontakt
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Understanding activity and selectivity of metal-nitrogen-doped carbon catalysts for electrochemical reduction of CO2

MPG-Autoren
/persons/resource/persons22020

Roldan Cuenya,  Beatriz
Department of Physics, Ruhr University Bochum;
Interface Science, Fritz Haber Institute, Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)

s41467-017-01035-z.pdf
(Verlagsversion), 2MB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Ju, W., Bagger, A., Hao, G.-P., Varela, A. S., Sinev, I., Bon, V., et al. (2017). Understanding activity and selectivity of metal-nitrogen-doped carbon catalysts for electrochemical reduction of CO2. Nature Communications, 8: 944. doi:10.1038/s41467-017-01035-z.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-002E-2437-D
Zusammenfassung
Direct electrochemical reduction of CO2 to fuels and chemicals using renewable electricity has attracted significant attention partly due to the fundamental challenges related to reactivity and selectivity, and partly due to its importance for industrial CO2-consuming gas diffusion cathodes. Here, we present advances in the understanding of trends in the CO2 to CO electrocatalysis of metal- and nitrogen-doped porous carbons containing catalytically active M–Nx moieties (M = Mn, Fe, Co, Ni, Cu). We investigate their intrinsic catalytic reactivity, CO turnover frequencies, CO faradaic efficiencies and demonstrate that Fe–N–C and especially Ni–N–C catalysts rival Au- and Ag-based catalysts. We model the catalytically active M–Nx moieties using density functional theory and correlate the theoretical binding energies with the experiments to give reactivity-selectivity descriptors. This gives an atomicscale mechanistic understanding of potential-dependent CO and hydrocarbon selectivity from the M–Nx moieties and it provides predictive guidelines for the rational design of selective carbon-based CO2 reduction catalysts.