Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Konferenzbeitrag

Establishing and validating a new source analysis method using phase

MPG-Autoren
/persons/resource/persons212469

Kumar,  Saurabh
Department Neurology, MPI for Human Cognitive and Brain Sciences, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Chirumamilla, V. C., Gonzalez-Escamilla, G., Kumar, S., Longfei, X., Groppa, S., & Muthuraman, M. (2017). Establishing and validating a new source analysis method using phase. In Proceedings of the 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) (pp. 2778-2781). doi:10.1109/EMBC.2017.8037433.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-002E-25C8-0
Zusammenfassung
Electroencephalogram (EEG) measures the brain oscillatory activity non-invasively. The localization of deep brain generators of the electric fields is essential for understanding neuronal function in healthy humans and for damasking specific regions that cause abnormal activity in patients with neurological disorders. The aim of this study was to test whether the phase estimation from scalp data can be reliably used to identify the number of dipoles in source analyses. The steps performed included: i) modeling different phasic oscillatory signals using auto-regressive processes at a particular frequency, ii) simulation of two different noises, namely white and colored noise, having different signal-to-noise ratios, iii) simulation of dipoles at different areas in the brain and iv) estimation of the number of dipoles by calculating the phase differences of the simulated signals. Moreover we applied this method of source analysis on real data from temporal lobe epilepsy (TLE) patients. The analytical framework was successful in identifying the sources and their orientations in the simulated data and identified the epileptogenic area in the studied patients which was confirmed by pathological studies after TLE surgery.