日本語
 
Help Privacy Policy ポリシー/免責事項
  詳細検索ブラウズ

アイテム詳細


公開

学術論文

Root chemistry and soil fauna, but not soil abiotic conditions explain the effects of plant diversity on root decomposition

MPS-Authors
/persons/resource/persons62384

Gleixner,  Gerd
Molecular Biogeochemistry Group, Dr. G. Gleixner, Department Biogeochemical Processes, Prof. S. E. Trumbore, Max Planck Institute for Biogeochemistry, Max Planck Society;

/persons/resource/persons130971

Hildebrandt,  Anke
FSU Jena Research Group Ecohydrology, Dr. A. Hildebrandt, Max Planck Institute for Biogeochemistry, Max Planck Society;

/persons/resource/persons129628

Lange,  Markus
Molecular Biogeochemistry Group, Dr. G. Gleixner, Department Biogeochemical Processes, Prof. S. E. Trumbore, Max Planck Institute for Biogeochemistry, Max Planck Society;

/persons/resource/persons62606

Wirth,  Christian
Interdepartmental Max Planck Fellow Group Functional Biogeography, Max Planck Institute for Biogeochemistry, Max Planck Society;

External Resource
There are no locators available
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
フルテキスト (公開)
公開されているフルテキストはありません
付随資料 (公開)
There is no public supplementary material available
引用

Chen, H., Oram, N. J., Barry, K. E., Mommer, L., van Ruijven, J., de Kroon, H., Ebeling, A., Eisenhauer, N., Fischer, C., Gleixner, G., Gessler, A., Mace, O. G., Hacker, N., Hildebrandt, A., Lange, M., Scherer-Lorenzen, M., Scheu, S., Oelmann, Y., Wagg, C., Wilcke, W., Wirth, C., & Weigelt, A. (2017). Root chemistry and soil fauna, but not soil abiotic conditions explain the effects of plant diversity on root decomposition. Oecologia, 185(3), 499-511. doi:10.1007/s00442-017-3962-9.


引用: https://hdl.handle.net/11858/00-001M-0000-002E-2768-1
要旨
Plant diversity influences many ecosystem functions including root decomposition. However, due to the presence of multiple pathways via which plant diversity may affect root decomposition, our mechanistic understanding of their relationships is limited. In a grassland biodiversity experiment, we simultaneously assessed the effects of three pathways—root litter quality, soil biota, and soil abiotic conditions—on the relationships between plant diversity (in terms of species richness and the presence/absence of grasses and legumes) and root decomposition using structural equation modeling. Our final structural equation model explained 70% of the variation in root mass loss. However, different measures of plant diversity included in our model operated via different pathways to alter root mass loss. Plant species richness had a negative effect on root mass loss. This was partially due to increased Oribatida abundance, but was weakened by enhanced root potassium (K) concentration in more diverse mixtures. Equally, grass presence negatively affected root mass loss. This effect of grasses was mostly mediated via increased root lignin concentration and supported via increased Oribatida abundance and decreased root K concentration. In contrast, legume presence showed a net positive effect on root mass loss via decreased root lignin concentration and increased root magnesium concentration, both of which led to enhanced root mass loss. Overall, the different measures of plant diversity had contrasting effects on root decomposition. Furthermore, we found that root chemistry and soil biota but not root morphology or soil abiotic conditions mediated these effects of plant diversity on root decomposition.