English
 
User Manual Privacy Policy Disclaimer Contact us
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Paper

Molecular Dynamics Simulation of the Surface Tension of Aqueous Sodium Chloride: from Dilute to Highly Supersaturated Solutions and Molten Salt

MPS-Authors
/persons/resource/persons203321

Wang,  X.
Multiphase Chemistry, Max Planck Institute for Chemistry, Max Planck Society;

/persons/resource/persons212588

Chen,  C.
Multiphase Chemistry, Max Planck Institute for Chemistry, Max Planck Society;

/persons/resource/persons203111

Kuhn,  U.
Multiphase Chemistry, Max Planck Institute for Chemistry, Max Planck Society;

/persons/resource/persons101189

Pöschl,  U.
Multiphase Chemistry, Max Planck Institute for Chemistry, Max Planck Society;

/persons/resource/persons101295

Su,  H.
Multiphase Chemistry, Max Planck Institute for Chemistry, Max Planck Society;

/persons/resource/persons127588

Cheng,  Y. F.
Multiphase Chemistry, Max Planck Institute for Chemistry, Max Planck Society;

Locator
There are no locators available
Fulltext (public)
There are no public fulltexts available
Supplementary Material (public)
There is no public supplementary material available
Citation

Wang, X., Chen, C., Binder, K., Kuhn, U., Pöschl, U., Su, H., et al. (2017). Molecular Dynamics Simulation of the Surface Tension of Aqueous Sodium Chloride: from Dilute to Highly Supersaturated Solutions and Molten Salt. Atmospheric Chemistry and Physics Discussions, 17.


Cite as: http://hdl.handle.net/11858/00-001M-0000-002E-2A6C-3
Abstract
Sodium chloride (NaCl) is one of the key components of atmospheric aerosols. The surface tension of aqueous NaCl solution (σNaCl,sol) and its concentration dependence are essential to determine the equilibrium water vapor pressure of aqueous NaCl droplets. Supersaturated NaCl solution droplets are observed in laboratory experiments and under atmospheric conditions, but the experimental data for σNaCl,sol are mostly limited up to sub-saturated solutions. In this study, the surface tension of aqueous NaCl is investigated by molecular dynamics (MD) simulations and pressure tensor method from dilute to highly supersaturated solutions. We show that the linear approximation of concentration dependence of σNaCl,sol at molality scale can be extended to the supersaturated NaCl solution until a molality of ~9.6 mol kg−1 (i.e., solute mass fraction (xNaCl) of ~0.36). Energetic analyses show that this monotonic increase of surface tension is driven by the increase of excessive surface enthalpy (∆H) as the solution becomes concentrated. After that, the simulated σNaCl,sol remains almost unchanged until xNaCl of ~0.47 (near the concentration upon efflorescence). The existence of the "inflection point" at xNaCl of ~0.36 and the stable surface tension of xNaCl between ~0.36 and ~0.47 can be attributed to a competitive growth of excessive surface entropy term (T · ∆S) and the excessive surface enthalpy term (∆H). After a "second inflection point" at xNaCl of ~0.47, the simulated σNaCl,sol gradually regains the growing momentum with a tendency to approach the surface tension of molten NaCl (~148.4 mN m−1 at 298.15 K, MD simulation based extrapolation). This fast increase of σNaCl,sol at xNaCl > 0.47 is primarily still an excessive surface enthalpy-driving process, although contribution from concurrent fluctuation of excessive surface entropy is expected but in a relatively smaller scale. Our results reveal different regimes of concentration dependence of the surface tension of aqueous NaCl at 298.15 K: a water-dominated regime (xNaCl from 0 to ~0.36), a transition regime (xNaCl from ~0.36 to ~0.47) and a molten NaCl-dominated regime (xNaCl from ~0.47 to 1).