Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Alchemical free energy calculations for nucleotide mutations in protein-DNA complexes.

MPG-Autoren
/persons/resource/persons32617

Gapsys,  V.
Research Group of Computational Biomolecular Dynamics, MPI for biophysical chemistry, Max Planck Society;

/persons/resource/persons14970

de Groot,  B. L.
Research Group of Computational Biomolecular Dynamics, MPI for biophysical chemistry, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)

2498896.pdf
(Verlagsversion), 5MB

Ergänzendes Material (frei zugänglich)

2498896_Suppl.pdf
(Ergänzendes Material), 17MB

Zitation

Gapsys, V., & de Groot, B. L. (2017). Alchemical free energy calculations for nucleotide mutations in protein-DNA complexes. Journal of Chemical Theory and Computation, 13(12), 6275-6289. doi:10.1021/acs.jctc.7b00849.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-002E-2BAA-D
Zusammenfassung
Nucleotide sequence dependent interactions between proteins and DNA are responsible for a wide range of gene regulatory functions. Accurate and generalizable methods to evaluate the strength of protein-DNA binding have been long sought after. While numerous computational approaches have been developed, most of them require fitting parameters to experimental data to a certain degree, e.g. machine learning algorithms or knowledge based statistical potentials. Molecular dynamics based free energy calculations offer a robust, system independent, first principles based method to calculate free energy differences upon nucleotide mutation. We present an automated procedure to setup alchemical MD based calculations to evaluate free energy changes occurring due to a nucleotide mutation in DNA. We further use these methods to perform a large scale mutation scan comprising 397 nucleotide mutation cases in 16 protein-DNA complexes. The obtained prediction accuracy reaches 5.6 kJ/mol average unsigned deviation from experiment. Subsequently, we utilize the MD based free energy calculations to construct protein-DNA binding profiles for a zinc finger protein Zif268. The calculation results compare remarkably well with the experimentally determined binding profiles. The software automating structure and topology setup for alchemical calculations is a part of pmx package; the utilities are also made available online: http://pmx.mpibpc.mpg.de/dna_webserver.html.