English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Paper

Lifestyle dependent occurrence of airborne fungi

MPS-Authors
/persons/resource/persons101185

Pickersgill,  D. A.
Multiphase Chemistry, Max Planck Institute for Chemistry, Max Planck Society;

/persons/resource/persons212722

Wehking,  J.
Multiphase Chemistry, Max Planck Institute for Chemistry, Max Planck Society;

/persons/resource/persons101189

Pöschl,  U.
Multiphase Chemistry, Max Planck Institute for Chemistry, Max Planck Society;

/persons/resource/persons100944

Fröhlich-Nowoisky,  J.
Multiphase Chemistry, Max Planck Institute for Chemistry, Max Planck Society;

/persons/resource/persons100905

Després,  V. R.
Multiphase Chemistry, Max Planck Institute for Chemistry, Max Planck Society;

External Resource
No external resources are shared
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Pickersgill, D. A., Wehking, J., Paulsen, H., Thines, E., Pöschl, U., Fröhlich-Nowoisky, J., et al. (2017). Lifestyle dependent occurrence of airborne fungi. Biogeosciences Discussions, 14. doi:10.5194/bg-2017-452.


Cite as: http://hdl.handle.net/11858/00-001M-0000-002E-334F-F
Abstract
Fungi play important roles in the environment, agriculture, and human health. Most fungal species spread by wind-driven dispersal of spores, determining their occurrence and distribution in different environments. The dynamics of airborne fungi and their dependence on lifestyle and environmental conditions, however, are not well characterized. Here, we categorize the fungi detected in coarse and fine aerosol samples from continental boundary layer air using a lifestyle classification scheme that differentiates whether the fungi are (A) primarily associated to herbaceous or woody plants and (B), whether they are saprophytic, plant pathogenic, or surface inhabitants. "Herbaceous" fungi exhibit stronger seasonal variations and correlations with meteorological factors. We find two distinct clusters when viewing the distribution of the fungi between the coarse and fine size fractions. Pathogenic and surface-inhabiting herbaceous fungi are shifted towards the coarse size fraction, adapted to impaction on plant surfaces, while saprophytic fungi are shifted towards the fine fraction or are evenly distributed, adapted more to sedimentation and longer atmospheric residence times. "Wood" fungi display sporadic occurrences, seen for most saprophytes, or year-round occurrences with seasonal to polycyclic peaks seen amongst pathogens. In comparison to herbaceous fungi they show weaker correlations with meteorological factors. They display more even coarse-fine distributions, which may be an adaptation to the calm conditions beneath the forest canopy. The differences reflect lifestyle-dependent sporulation strategies which may facilitate and improve the assessment and forecasting of the abundance and spread of pathogenic fungi and related issues such as crop protection in view of land-use and climate change.