Deutsch
 
Benutzerhandbuch Datenschutzhinweis Impressum Kontakt
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Planar model system of the Phillips (Cr/SiO2) catalyst based on a well-defined thin silicate film

MPG-Autoren
/persons/resource/persons84696

Pan,  Qiushi
Chemical Physics, Fritz Haber Institute, Max Planck Society;

/persons/resource/persons137075

Li,  Linfei
Chemical Physics, Fritz Haber Institute, Max Planck Society;

/persons/resource/persons22106

Shaikhutdinov,  Shamil K.
Chemical Physics, Fritz Haber Institute, Max Planck Society;

/persons/resource/persons21524

Freund,  Hans-Joachim
Chemical Physics, Fritz Haber Institute, Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Pan, Q., Li, L., Shaikhutdinov, S. K., & Freund, H.-J. (2018). Planar model system of the Phillips (Cr/SiO2) catalyst based on a well-defined thin silicate film. Journal of Catalysis, 357, 12-19. doi:10.1016/j.jcat.2017.10.026.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-002E-76A5-E
Zusammenfassung
The Phillips catalyst (Cr/SiO2) is successfully used in the large-scale production of polyethylene and has attracted a great interest in catalytic community over the last sixty years. However, the atomic structure of the active site(s) and the reaction mechanism remain controversial, in particular due to the structural complexity and surface heterogeneity of the amorphous silica. In this work, we used a well-defined, atomically flat silicate bilayer film grown on Ru(0001) as a support offering the opportunity to investigate mechanistic aspects at the atomic scale. To fabricate a planar Cr/SiO2 model system suitable for surface science studies, chromium was deposited using physical vapor deposition onto the hydroxylated silica film surface. Structural characterization and adsorption studies were performed by infrared reflection absorption spectroscopy (IRAS) and temperature programmed desorption (TPD). Hydroxyls groups seem to serve as anchoring cites to Cr ad-atoms. As monitored by IRAS, hydroxyls consumption correlated with the appearance of the new band at ~1007 cm-1 typical for Cr=O vibrations. In addition, CO titration experiments suggested also the presence of "naked" Cr, which transforms into mono- and di-oxo chromyl species and their aggregation upon oxidation treatments. TPD experiments of ethylene adsorption at low temperatures under UHV conditions showed the formation of butane as one of the main products. The resultant surfaces are thermally stable, at least, up to 400 K which allows to investigate ethylene polymerization further under more realistic conditions.