Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Gradual and stepwise changes in the membrane capacitance of rat peritoneal mast cells

MPG-Autoren
/persons/resource/persons15570

Neher,  E.
Department of Membrane Biophysics, MPI for biophysical chemistry, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Almers, W., & Neher, E. (1987). Gradual and stepwise changes in the membrane capacitance of rat peritoneal mast cells. The Journal of Physiology, 386, 205-217. doi:10.1113/jphysiol.1987.sp016530.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-002E-8515-8
Zusammenfassung
The membrane capacitance of mast cells was monitored under voltage clamp, using sinusoidal excitation and a lock-in amplifier. 2. Degranulation was accompanied by stepwise capacitance increases that presumably represent the fusion of single secretory granules with the cell membrane. Besides capacitance steps, we also observed gradual changes in capacitance that occurred even in the absence of degranulation, were independent of the presence of nucleotides in the pipette, and were steeply dependent on cytoplasmic [Ca2+]. 3. Cytoplasmic Ca2+ at concentrations of 0.3-3 microM stimulated a decline in capacitance, with a dose-response curve suggesting control by the binding of Ca2+ to high-affinity intracellular sites. When maximally activated, this mechanism could lead to a loss of about 6% of the cell membrane capacitance, at an average rate of 0.1-0.2% s-1. 4. At even higher cytoplasmic [Ca2+] (greater than 3 microM), the reverse effect was observed. The capacitance increased gradually by up to 40%, at an average rate of 0.4% s-1. Evidently gradual changes in membrane capacitance can occur by two mechanisms, and both are influenced by cytoplasmic [Ca2+]. 5. Ca2+ frequently stimulated an inward current accompanied by an increase in membrane conductance. 6. The effects described above were observed also when only trace amounts of Ca2+ and chelator were added to the cytosol, and when increases in cytosolic [Ca2+] could have occurred only by endogenous mechanisms. It is suggested that these effects occur also in intact cells during the large [Ca2+] increases known to occur before and during degranulation.